SA-197 Add suggestions to product search

- Change OpenAI prompt
- Update logic OpenAI response handling
- Start refactoring of  SearchProductAsync()
- Add GetWishlistMessagesAsync() to MessagesRepository to retrieve all messages for wishlist
This commit is contained in:
shchoholiev 2023-12-11 00:49:08 +00:00
parent 0022683192
commit 68ab565800
7 changed files with 109 additions and 112 deletions

View File

@ -8,7 +8,6 @@ using ShoppingAssistantApi.Domain.Enums;
namespace ShoppingAssistantApi.Api.Controllers; namespace ShoppingAssistantApi.Api.Controllers;
[Authorize]
public class ProductsSearchController : BaseController public class ProductsSearchController : BaseController
{ {
private readonly IProductService _productService; private readonly IProductService _productService;
@ -21,16 +20,10 @@ public class ProductsSearchController : BaseController
_wishlistsService = wishlistsService; _wishlistsService = wishlistsService;
} }
[Authorize]
[HttpPost("search/{wishlistId}")] [HttpPost("search/{wishlistId}")]
public async Task StreamDataToClient(string wishlistId, [FromBody]MessageCreateDto message, CancellationToken cancellationToken) public async Task StreamDataToClient(string wishlistId, [FromBody] MessageCreateDto message, CancellationToken cancellationToken)
{ {
var dto = new MessageDto()
{
Text = message.Text,
Role = MessageRoles.User.ToString(),
};
await _wishlistsService.AddMessageToPersonalWishlistAsync(wishlistId, dto, cancellationToken);
Response.Headers.Add("Content-Type", "text/event-stream"); Response.Headers.Add("Content-Type", "text/event-stream");
Response.Headers.Add("Cache-Control", "no-cache"); Response.Headers.Add("Cache-Control", "no-cache");
Response.Headers.Add("Connection", "keep-alive"); Response.Headers.Add("Connection", "keep-alive");
@ -43,8 +36,8 @@ public class ProductsSearchController : BaseController
var serverSentEvent = $"event: {sse.Event}\ndata: {chunk}\n\n"; var serverSentEvent = $"event: {sse.Event}\ndata: {chunk}\n\n";
await Response.WriteAsync(serverSentEvent); await Response.WriteAsync(serverSentEvent, cancellationToken: cancellationToken);
await Response.Body.FlushAsync(); await Response.Body.FlushAsync(cancellationToken);
} }
} }

View File

@ -1,4 +1,5 @@
using System.Linq.Expressions; using System.Linq.Expressions;
using MongoDB.Bson;
using ShoppingAssistantApi.Domain.Entities; using ShoppingAssistantApi.Domain.Entities;
namespace ShoppingAssistantApi.Application.IRepositories; namespace ShoppingAssistantApi.Application.IRepositories;
@ -6,4 +7,6 @@ namespace ShoppingAssistantApi.Application.IRepositories;
public interface IMessagesRepository : IBaseRepository<Message> public interface IMessagesRepository : IBaseRepository<Message>
{ {
Task<List<Message>> GetPageStartingFromEndAsync(int pageNumber, int pageSize, Expression<Func<Message, bool>> predicate, CancellationToken cancellationToken); Task<List<Message>> GetPageStartingFromEndAsync(int pageNumber, int pageSize, Expression<Func<Message, bool>> predicate, CancellationToken cancellationToken);
Task<List<Message>> GetWishlistMessagesAsync(ObjectId wishlistId, CancellationToken cancellationToken);
} }

View File

@ -9,18 +9,14 @@ public enum OpenAiRole
public static class OpenAiRoleExtensions public static class OpenAiRoleExtensions
{ {
public static string RequestConvert(this OpenAiRole role) public static string ToRequestString(this OpenAiRole role)
{ {
switch (role) return role switch
{ {
case OpenAiRole.System: OpenAiRole.System => "system",
return "system"; OpenAiRole.Assistant => "assistant",
case OpenAiRole.Assistant: OpenAiRole.User => "user",
return "assistant"; _ => "",
case OpenAiRole.User: };
return "user";
default:
return "";
}
} }
} }

View File

@ -1,8 +1,6 @@
using System.IO;
using System.Net.Http.Headers;
using System.Text; using System.Text;
using Microsoft.Extensions.Logging;
using Newtonsoft.Json; using Newtonsoft.Json;
using Newtonsoft.Json.Linq;
using Newtonsoft.Json.Serialization; using Newtonsoft.Json.Serialization;
using ShoppingAssistantApi.Application.IServices; using ShoppingAssistantApi.Application.IServices;
using ShoppingAssistantApi.Application.Models.OpenAi; using ShoppingAssistantApi.Application.Models.OpenAi;
@ -23,9 +21,14 @@ public class OpenAiService : IOpenAiService
private readonly HttpClient _httpClient; private readonly HttpClient _httpClient;
public OpenAiService(IHttpClientFactory httpClientFactory) private readonly ILogger<OpenAiService> _logger;
public OpenAiService(
IHttpClientFactory httpClientFactory,
ILogger<OpenAiService> logger)
{ {
_httpClient = httpClientFactory.CreateClient("OpenAiHttpClient"); _httpClient = httpClientFactory.CreateClient("OpenAiHttpClient");
_logger = logger;
} }
public async Task<OpenAiMessage> GetChatCompletion(ChatCompletionRequest chat, CancellationToken cancellationToken) public async Task<OpenAiMessage> GetChatCompletion(ChatCompletionRequest chat, CancellationToken cancellationToken)
@ -45,6 +48,8 @@ public class OpenAiService : IOpenAiService
public async IAsyncEnumerable<string> GetChatCompletionStream(ChatCompletionRequest chat, CancellationToken cancellationToken) public async IAsyncEnumerable<string> GetChatCompletionStream(ChatCompletionRequest chat, CancellationToken cancellationToken)
{ {
_logger.LogInformation($"Sending completion stream request to OpenAI.");
chat.Stream = true; chat.Stream = true;
var jsonBody = JsonConvert.SerializeObject(chat, _jsonSettings); var jsonBody = JsonConvert.SerializeObject(chat, _jsonSettings);
@ -58,12 +63,22 @@ public class OpenAiService : IOpenAiService
while (!cancellationToken.IsCancellationRequested) while (!cancellationToken.IsCancellationRequested)
{ {
var jsonChunk = await reader.ReadLineAsync(); var jsonChunk = await reader.ReadLineAsync();
_logger.LogInformation($"Received chunk from OpenAI.");
if (jsonChunk.StartsWith("data: ")) if (jsonChunk.StartsWith("data: "))
{ {
jsonChunk = jsonChunk.Substring("data: ".Length); jsonChunk = jsonChunk.Substring("data: ".Length);
if (jsonChunk == "[DONE]") break; if (jsonChunk == "[DONE]")
{
_logger.LogInformation($"Finished getting response from OpenAI");
break;
}
var data = JsonConvert.DeserializeObject<OpenAiResponse>(jsonChunk); var data = JsonConvert.DeserializeObject<OpenAiResponse>(jsonChunk);
if (data.Choices[0].Delta.Content == "" || data.Choices[0].Delta.Content == null) continue; if (data.Choices[0].Delta.Content == "" || data.Choices[0].Delta.Content == null) continue;
yield return data.Choices[0].Delta.Content; yield return data.Choices[0].Delta.Content;
} }
} }

View File

@ -1,4 +1,4 @@
using System.Diagnostics; using Microsoft.Extensions.Logging;
using MongoDB.Bson; using MongoDB.Bson;
using ShoppingAssistantApi.Application.IRepositories; using ShoppingAssistantApi.Application.IRepositories;
using ShoppingAssistantApi.Application.IServices; using ShoppingAssistantApi.Application.IServices;
@ -6,7 +6,6 @@ using ShoppingAssistantApi.Application.Models.CreateDtos;
using ShoppingAssistantApi.Application.Models.Dtos; using ShoppingAssistantApi.Application.Models.Dtos;
using ShoppingAssistantApi.Application.Models.OpenAi; using ShoppingAssistantApi.Application.Models.OpenAi;
using ShoppingAssistantApi.Application.Models.ProductSearch; using ShoppingAssistantApi.Application.Models.ProductSearch;
using ShoppingAssistantApi.Domain.Entities;
using ShoppingAssistantApi.Domain.Enums; using ShoppingAssistantApi.Domain.Enums;
using ServerSentEvent = ShoppingAssistantApi.Application.Models.ProductSearch.ServerSentEvent; using ServerSentEvent = ShoppingAssistantApi.Application.Models.ProductSearch.ServerSentEvent;
@ -20,121 +19,108 @@ public class ProductService : IProductService
private readonly IMessagesRepository _messagesRepository; private readonly IMessagesRepository _messagesRepository;
private bool mqchecker = false; private readonly ILogger<ProductService> _logger;
private SearchEventType currentDataType = SearchEventType.Wishlist; public ProductService(
IOpenAiService openAiService,
public ProductService(IOpenAiService openAiService, IWishlistsService wishlistsService, IMessagesRepository messagesRepository) IWishlistsService wishlistsService,
IMessagesRepository messagesRepository,
ILogger<ProductService> logger)
{ {
_openAiService = openAiService; _openAiService = openAiService;
_wishlistsService = wishlistsService; _wishlistsService = wishlistsService;
_messagesRepository = messagesRepository; _messagesRepository = messagesRepository;
_logger = logger;
} }
public async IAsyncEnumerable<ServerSentEvent> SearchProductAsync(string wishlistId, MessageCreateDto message, CancellationToken cancellationToken) public async IAsyncEnumerable<ServerSentEvent> SearchProductAsync(string wishlistId, MessageCreateDto newMessage, CancellationToken cancellationToken)
{ {
string promptForGpt = var systemPrompt =
"You are a Shopping Assistant that helps people find product recommendations. Ask user additional questions if more context needed." + "You are a Shopping Assistant that helps people find product recommendations. Ask user additional questions if more context needed." +
"\nYou must return data with one of the prefixes:" + "\nYou must return data with one of the prefixes:" +
"\n[Question] - return question" + "\n[Question] - return question. Must be followed by suggestions how to answer the question" +
"\n[Suggestions] - return semicolon separated suggestion how to answer to a question" + "\n[Suggestions] - return semicolon separated suggestion how to answer to a question" +
"\n[Message] - return text" + "\n[Message] - return text" +
"\n[Products] - return semicolon separated product names"; "\n[Products] - return semicolon separated product names";
var countOfMessage = await _messagesRepository var wishlistObjectId = ObjectId.Parse(wishlistId);
.GetCountAsync(message=>message.WishlistId == ObjectId.Parse((wishlistId)), cancellationToken); var messages = await _messagesRepository.GetWishlistMessagesAsync(wishlistObjectId, cancellationToken);
var previousMessages = await _wishlistsService
.GetMessagesPageFromPersonalWishlistAsync(wishlistId, 1, countOfMessage, cancellationToken);
var chatRequest = new ChatCompletionRequest var chatRequest = new ChatCompletionRequest
{ {
Messages = new List<OpenAiMessage> Messages = new List<OpenAiMessage>
{ {
new OpenAiMessage new() {
{ Role = OpenAiRole.System.ToRequestString(),
Role = OpenAiRoleExtensions.RequestConvert(OpenAiRole.System), Content = systemPrompt
Content = promptForGpt
} }
} }
}; };
for (int i = 0; i < messages.Count; i++)
var messagesForOpenAI = new List<OpenAiMessage>();
foreach (var item in previousMessages.Items)
{ {
if (item.Role == "Application") var message = messages[i];
if (i == 0)
{ {
messagesForOpenAI message.Text = "[Question] " + message.Text + "\n [Suggestions] Bicycle, Laptop";
.Add(new OpenAiMessage()
{
Role = OpenAiRole.Assistant.RequestConvert(),
Content = item.Text
});
}
else
{
messagesForOpenAI
.Add(new OpenAiMessage()
{
Role = item.Role.ToLower(),
Content = item.Text
});
} }
chatRequest.Messages
.Add(new OpenAiMessage()
{
Role = message.Role == "Application" ? "assistant" : "user",
Content = message.Text
});
} }
messagesForOpenAI.Add(new OpenAiMessage() chatRequest.Messages.Add(new ()
{ {
Role = OpenAiRoleExtensions.RequestConvert(OpenAiRole.User), Role = OpenAiRole.User.ToRequestString(),
Content = message.Text Content = newMessage.Text
}); });
chatRequest.Messages.AddRange(messagesForOpenAI); // Don't wait for the task to finish because we dont need the result of this task
var dto = new MessageDto()
{
Text = newMessage.Text,
Role = MessageRoles.User.ToString(),
};
var saveNewMessageTask = _wishlistsService.AddMessageToPersonalWishlistAsync(wishlistId, dto, cancellationToken);
var currentDataType = SearchEventType.Wishlist;
var suggestionBuffer = new Suggestion(); var suggestionBuffer = new Suggestion();
var messageBuffer = new MessagePart(); var messageBuffer = new MessagePart();
var productBuffer = new ProductName(); var productBuffer = new ProductName();
var dataTypeHolder = string.Empty; var dataTypeHolder = string.Empty;
var counter = 0;
await foreach (var data in _openAiService.GetChatCompletionStream(chatRequest, cancellationToken)) await foreach (var data in _openAiService.GetChatCompletionStream(chatRequest, cancellationToken))
{ {
counter++; if (data.Contains('['))
if (mqchecker && currentDataType == SearchEventType.Message && messageBuffer != null)
{ {
if (data == "[") dataTypeHolder = data;
}
else if (data.Contains(']'))
{
if (currentDataType == SearchEventType.Message)
{ {
_wishlistsService.AddMessageToPersonalWishlistAsync(wishlistId, new MessageDto() _ = await saveNewMessageTask;
// Don't wait for the task to finish because we dont need the result of this task
_ = _wishlistsService.AddMessageToPersonalWishlistAsync(wishlistId, new MessageDto()
{ {
Text = messageBuffer.Text, Text = messageBuffer.Text,
Role = MessageRoles.Application.ToString(), Role = MessageRoles.Application.ToString(),
}, cancellationToken); }, cancellationToken);
mqchecker = false;
} }
}
if (data.Contains("["))
{
dataTypeHolder = string.Empty;
dataTypeHolder += data;
}
else if (data.Contains("]"))
{
dataTypeHolder += data; dataTypeHolder += data;
currentDataType = DetermineDataType(dataTypeHolder); currentDataType = DetermineDataType(dataTypeHolder);
if (currentDataType == SearchEventType.Message)
{
mqchecker = true;
}
}
else if (dataTypeHolder=="[" && !data.Contains("[")) dataTypeHolder = string.Empty;
}
else if (dataTypeHolder.Contains('['))
{ {
dataTypeHolder += data; dataTypeHolder += data;
} }
else else
{ {
switch (currentDataType) switch (currentDataType)
@ -147,47 +133,44 @@ public class ProductService : IProductService
}; };
currentDataType = SearchEventType.Message; currentDataType = SearchEventType.Message;
messageBuffer.Text += data; messageBuffer.Text += data;
break; break;
case SearchEventType.Suggestion: case SearchEventType.Suggestion:
if (data.Contains(";")) if (data.Contains(';'))
{ {
yield return new ServerSentEvent yield return new ServerSentEvent
{ {
Event = SearchEventType.Suggestion, Event = SearchEventType.Suggestion,
Data = suggestionBuffer.Text Data = suggestionBuffer.Text.Trim()
}; };
suggestionBuffer.Text = string.Empty; suggestionBuffer.Text = string.Empty;
break; break;
} }
suggestionBuffer.Text += data; suggestionBuffer.Text += data;
break; break;
case SearchEventType.Product: case SearchEventType.Product:
if (data.Contains(";")) if (data.Contains(';'))
{ {
yield return new ServerSentEvent yield return new ServerSentEvent
{ {
Event = SearchEventType.Product, Event = SearchEventType.Product,
Data = productBuffer.Name Data = productBuffer.Name.Trim()
}; };
productBuffer.Name = string.Empty; productBuffer.Name = string.Empty;
break; break;
} }
productBuffer.Name += data; productBuffer.Name += data;
break; break;
} }
} }
} }
if (currentDataType == SearchEventType.Message)
{
_wishlistsService.AddMessageToPersonalWishlistAsync(wishlistId, new MessageDto()
{
Text = messageBuffer.Text,
Role = MessageRoles.Application.ToString(),
}, cancellationToken);
mqchecker = false;
}
} }
private SearchEventType DetermineDataType(string dataTypeHolder) private SearchEventType DetermineDataType(string dataTypeHolder)
@ -196,7 +179,7 @@ public class ProductService : IProductService
{ {
return SearchEventType.Message; return SearchEventType.Message;
} }
else if (dataTypeHolder.StartsWith("[Options]")) else if (dataTypeHolder.StartsWith("[Suggestions]"))
{ {
return SearchEventType.Suggestion; return SearchEventType.Suggestion;
} }
@ -213,5 +196,4 @@ public class ProductService : IProductService
return SearchEventType.Wishlist; return SearchEventType.Wishlist;
} }
} }
} }

View File

@ -82,12 +82,12 @@ public class WishlistsService : IWishlistsService
{ {
new OpenAiMessage new OpenAiMessage
{ {
Role = OpenAiRole.System.RequestConvert(), Role = OpenAiRole.System.ToRequestString(),
Content = "You will be provided with a general information about some product and your task is to generate general (not specific to any company or brand) chat name where recommendations on which specific product to buy will be given. Only name he product without adverbs and adjectives. Limit the name length to 5 words\nExamples:\n - Prompt: Hub For Macbook. Answer: Macbook Hub\n - Prompt: What is the best power bank for MacBook with capacity 20000 mAh and power near 20V? Answer: Macbook Powerbank\nIf the information tells nothing about some product answer with short generic name" Content = "You will be provided with a general information about some product and your task is to generate general (not specific to any company or brand) chat name where recommendations on which specific product to buy will be given. Only name he product without adverbs and adjectives. Limit the name length to 5 words\nExamples:\n - Prompt: Hub For Macbook. Answer: Macbook Hub\n - Prompt: What is the best power bank for MacBook with capacity 20000 mAh and power near 20V? Answer: Macbook Powerbank\nIf the information tells nothing about some product answer with short generic name"
}, },
new OpenAiMessage new OpenAiMessage
{ {
Role = OpenAiRole.User.RequestConvert(), Role = OpenAiRole.User.ToRequestString(),
Content = firstUserMessage.Text Content = firstUserMessage.Text
} }
} }

View File

@ -1,4 +1,5 @@
using System.Linq.Expressions; using System.Linq.Expressions;
using MongoDB.Bson;
using MongoDB.Driver; using MongoDB.Driver;
using ShoppingAssistantApi.Application.IRepositories; using ShoppingAssistantApi.Application.IRepositories;
using ShoppingAssistantApi.Domain.Entities; using ShoppingAssistantApi.Domain.Entities;
@ -18,4 +19,11 @@ public class MessagesRepository : BaseRepository<Message>, IMessagesRepository
.Limit(pageSize) .Limit(pageSize)
.ToListAsync(cancellationToken); .ToListAsync(cancellationToken);
} }
public Task<List<Message>> GetWishlistMessagesAsync(ObjectId wishlistId, CancellationToken cancellationToken)
{
return _collection
.Find(x => !x.IsDeleted && x.WishlistId == wishlistId)
.ToListAsync(cancellationToken);
}
} }