shopping-assistant-api/ShoppingAssistantApi.Infrastructure/Services/ProductService.cs

298 lines
10 KiB
C#

using System.Collections.ObjectModel;
using System.Linq.Expressions;
using System.Runtime.CompilerServices;
using Newtonsoft.Json.Linq;
using ShoppingAssistantApi.Application.IRepositories;
using ShoppingAssistantApi.Application.IServices;
using ShoppingAssistantApi.Application.Models.CreateDtos;
using ShoppingAssistantApi.Application.Models.Dtos;
using ShoppingAssistantApi.Application.Models.OpenAi;
using ShoppingAssistantApi.Application.Models.ProductSearch;
using ShoppingAssistantApi.Domain.Entities;
using ShoppingAssistantApi.Domain.Enums;
using ServerSentEvent = ShoppingAssistantApi.Application.Models.ProductSearch.ServerSentEvent;
namespace ShoppingAssistantApi.Infrastructure.Services;
public class ProductService : IProductService
{
private readonly IWishlistsService _wishlistsService;
private readonly IOpenAiService _openAiService;
public ProductService(IOpenAiService openAiService, IWishlistsService wishlistsService)
{
_openAiService = openAiService;
_wishlistsService = wishlistsService;
}
public async IAsyncEnumerable<ServerSentEvent> SearchProductAsync(string wishlistId, MessageCreateDto message, CancellationToken cancellationToken)
{
var chatRequest = new ChatCompletionRequest
{
Messages = new List<OpenAiMessage>
{
new OpenAiMessage
{
Role = "User",
Content = PromptForProductSearch(message.Text)
}
},
Stream = true
};
var currentDataType = SearchEventType.Wishlist;
var dataTypeHolder = string.Empty;
await foreach (var data in _openAiService.GetChatCompletionStream(chatRequest, cancellationToken))
{
if (data.Contains("["))
{
dataTypeHolder = string.Empty;
dataTypeHolder += data;
}
else if (data.Contains("]"))
{
dataTypeHolder += data;
currentDataType = DetermineDataType(dataTypeHolder);
}
else if (dataTypeHolder=="[" && !data.Contains("["))
{
dataTypeHolder += data;
}
else
{
switch (currentDataType)
{
case SearchEventType.Message:
yield return new ServerSentEvent
{
Event = SearchEventType.Message,
Data = data
};
break;
case SearchEventType.Suggestion:
yield return new ServerSentEvent
{
Event = SearchEventType.Suggestion,
Data = data
};
break;
case SearchEventType.Product:
yield return new ServerSentEvent
{
Event = SearchEventType.Product,
Data = data
};
break;
case SearchEventType.Wishlist:
yield return new ServerSentEvent
{
Event = SearchEventType.Wishlist,
Data = data
};
break;
}
dataTypeHolder = string.Empty;
}
}
}
private SearchEventType DetermineDataType(string dataTypeHolder)
{
if (dataTypeHolder.StartsWith("[Question]"))
{
return SearchEventType.Message;
}
else if (dataTypeHolder.StartsWith("[Options]"))
{
return SearchEventType.Suggestion;
}
else if (dataTypeHolder.StartsWith("[Message]"))
{
return SearchEventType.Message;
}
else if (dataTypeHolder.StartsWith("[Products]"))
{
return SearchEventType.Product;
}
else
{
return SearchEventType.Wishlist;
}
}
// TODO: remove all methods below
public async IAsyncEnumerable<(List<ProductName> ProductNames, WishlistDto Wishlist)> StartNewSearchAndReturnWishlist(Message message, CancellationToken cancellationToken)
{
List<OpenAiMessage> messages = new List<OpenAiMessage>()
{
new OpenAiMessage()
{
Role = "User",
Content = PromptForProductSearch(message.Text)
}
};
var chatRequest = new ChatCompletionRequest
{
Messages = messages
};
await foreach (var response in _openAiService.GetChatCompletionStream(chatRequest, cancellationToken))
{
var openAiContent = JObject.Parse(response);
var productNames = openAiContent["Name"]?.ToObject<List<ProductName>>() ?? new List<ProductName>();
WishlistCreateDto newWishlist = new WishlistCreateDto()
{
Type = "Product",
FirstMessageText = message.Text
};
var resultWishlistTask = _wishlistsService.StartPersonalWishlistAsync(newWishlist, cancellationToken);
var resultWishlist = await resultWishlistTask;
yield return (productNames, resultWishlist);
}
}
public async IAsyncEnumerable<string> GetProductFromSearch(Message message, [EnumeratorCancellation] CancellationToken cancellationToken)
{
List<OpenAiMessage> messages = new List<OpenAiMessage>()
{
new OpenAiMessage()
{
Role = "User",
Content = PromptForProductSearchWithQuestion(message.Text)
}
};
var chatRequest = new ChatCompletionRequest
{
Messages = messages
};
await foreach (var response in _openAiService.GetChatCompletionStream(chatRequest, cancellationToken))
{
var openAiContent = JObject.Parse(response);
var productNames = openAiContent["Name"]?.ToObject<List<ProductName>>();
if (productNames != null && productNames.Any())
{
foreach (var productName in productNames)
{
yield return productName.Name;
}
}
else
{
var questions = openAiContent["AdditionalQuestion"]?.ToObject<List<Question>>() ?? new List<Question>();
foreach (var question in questions)
{
yield return question.QuestionText;
}
}
}
}
public async IAsyncEnumerable<string> GetRecommendationsForProductFromSearchStream(Message message, CancellationToken cancellationToken)
{
List<OpenAiMessage> messages = new List<OpenAiMessage>()
{
new OpenAiMessage()
{
Role = "User",
Content = PromptForRecommendationsForProductSearch(message.Text)
}
};
var chatRequest = new ChatCompletionRequest
{
Messages = messages
};
await foreach (var response in _openAiService.GetChatCompletionStream(chatRequest, cancellationToken))
{
var openAiContent = JObject.Parse(response);
var recommendations = openAiContent["Recommendation"]?.ToObject<List<string>>() ?? new List<string>();
foreach (var recommendation in recommendations)
{
yield return recommendation;
}
}
}
public string PromptForProductSearch(string message)
{
string promptForSearch = "Return information in JSON. " +
"\nProvide information, only that indicated in the type of answer, namely only the name. " +
"\nAsk additional questions to the user if there is not enough information. " +
"\nIf there are several answer options, list them. " +
"\nYou don't need to display questions and products together! " +
"\nDo not output any text other than JSON!!! " +
$"\n\nQuestion: {message} " +
$"\nType of answer: Question:<question>[] " +
$"\n\nif there are no questions, then just display the products " +
$"\nType of answer: Name:<name>";
return promptForSearch;
}
public string PromptForRecommendationsForProductSearch(string message)
{
string promptForSearch = "Return information in JSON. " +
"\nProvide only information indicated in the type of answer, namely only the recommendation. " +
"\nIf there are several answer options, list them. " +
"\nDo not output any text other than JSON." +
$"\n\nGive recommendations for this question: {message} " +
"\nType of answer: " +
"\n\nRecommendation :<Recommendation>";
return promptForSearch;
}
public string PromptForProductSearchWithQuestion(string message)
{
string promptForSearch = "Return information in JSON. " +
"\nAsk additional questions to the user if there is not enough information." +
"\nIf there are several answer options, list them. " +
"\nYou don't need to display questions and products together!" +
"\nDo not output any text other than JSON!!!" +
$"\n\nQuestion: {message}" +
"\n\nif you can ask questions to clarify the choice, then ask them" +
"\nType of answer:" +
"\nAdditionalQuestion:<question>[]" +
"\n\nif there are no questions, then just display the products" +
"\nType of answer:" +
"\nName:<name>";
return promptForSearch;
}
}