Compare commits
No commits in common. "master" and "set-algebra" have entirely different histories.
master
...
set-algebr
14
.github/workflows/main.yml
vendored
14
.github/workflows/main.yml
vendored
@ -1,14 +0,0 @@
|
|||||||
name: Mirror to Gitea
|
|
||||||
on: [push]
|
|
||||||
jobs:
|
|
||||||
mirror:
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
fetch-depth: 0
|
|
||||||
- uses: yesolutions/mirror-action@master
|
|
||||||
with:
|
|
||||||
REMOTE: 'https://git.cuqmbr.xyz/cuqmbr/cdm-utils.git'
|
|
||||||
GIT_USERNAME: cuqmbr
|
|
||||||
GIT_PASSWORD: ${{ secrets.GIT_PASSWORD }}
|
|
Binary file not shown.
Before Width: | Height: | Size: 613 B |
@ -1,160 +0,0 @@
|
|||||||
<!DOCTYPE html>
|
|
||||||
<html lang="en">
|
|
||||||
|
|
||||||
<head>
|
|
||||||
<meta charset="UTF-8">
|
|
||||||
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
||||||
<link rel="icon" type="image/x-icon" href="favicon.png">
|
|
||||||
<title>Boolean Algebra Calculator</title>
|
|
||||||
|
|
||||||
<link rel="stylesheet" href="../style.css">
|
|
||||||
|
|
||||||
</head>
|
|
||||||
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<div class="gradient"></div>
|
|
||||||
|
|
||||||
<div class="container" id="container">
|
|
||||||
|
|
||||||
<header>
|
|
||||||
<div class="content">
|
|
||||||
<h3><a href="../">CDM Utils</a></h3>
|
|
||||||
<div class="theme">
|
|
||||||
<h3><a href="../Set-Algebra/">Set Algebra</a></h3>
|
|
||||||
<h3><a href="" class="current">Boolean Algebra</a></h3>
|
|
||||||
<h3><a href="../Knowledgebase/">Knowledgebase</a></h3>
|
|
||||||
<h3><a href="../Info/">Info</a></h3>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
</header>
|
|
||||||
|
|
||||||
<h1 class="title">Boolean Algebra Calculator</h1>
|
|
||||||
|
|
||||||
<div class="wrapper no-top-margin">
|
|
||||||
|
|
||||||
<div class="wrap-side">
|
|
||||||
<h1>Values</h1>
|
|
||||||
<div id="values">
|
|
||||||
<div class="input-wrap">
|
|
||||||
<h1 class="text">Value A = </h1>
|
|
||||||
<div class="input"><input type="value" id="value0" onkeydown="return checkInputValue(event.key, this.value, this.id)" placeholder="e.g. 0 or 1" /></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap">
|
|
||||||
<h1 class="text">Value B = </h1>
|
|
||||||
<div class="input"><input type="value" id="value1" onkeydown="return checkInputValue(event.key, this.value, this.id)" placeholder="e.g. 0 or 1" /></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<input class="addValue" type="button" value="Add Value" onclick="AddValue()" />
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div class="wrap-side">
|
|
||||||
<h1>Formulua</h1>
|
|
||||||
<h2><input type="problem" id="formula" onkeydown="return checkInputProblem(event.key, this.id)" placeholder="e.g. !A*(B+C)" /></h2>
|
|
||||||
<div class="buttons">
|
|
||||||
<input class="button" type="button" id="calculate" value="Evaluate" onclick="Evaluate()" />
|
|
||||||
<input class="button" type="button" id="calculate" value="Step by step" onclick="StepByStep()" />
|
|
||||||
</div>
|
|
||||||
<div class="buttons">
|
|
||||||
<input class="button" type="button" id="calculate" value="Build a Truth Table" onclick="BuildTruthTable()" />
|
|
||||||
</div>
|
|
||||||
<div class="buttons">
|
|
||||||
<input class="button" type="button" id="calculate" value="Make PDNF" onclick="BuildPDNF()" />
|
|
||||||
<input class="button" type="button" id="calculate" value="Make PCNF" onclick="BuildPCNF()" />
|
|
||||||
</div>
|
|
||||||
<div class="wrap-result">
|
|
||||||
<div class="input-wrap">
|
|
||||||
<h1 class="text">Result </h1>
|
|
||||||
<div class="input"><input type="result" id="result" readonly/></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<h6 class="description">Define variables then write the formula you need to solve</h6>
|
|
||||||
<h6 class="operations">
|
|
||||||
<div class="operation">
|
|
||||||
<div class="operation-bg"> !</div>
|
|
||||||
<h6>Negation</h6>
|
|
||||||
</div>
|
|
||||||
<div class="operation">
|
|
||||||
<div class="operation-bg"> *</div>
|
|
||||||
<h6>Conjunction</h6>
|
|
||||||
</div>
|
|
||||||
<div class="operation">
|
|
||||||
<div class="operation-bg"> +</div>
|
|
||||||
<h6>Disjunction</h6>
|
|
||||||
</div>
|
|
||||||
<div class="operation">
|
|
||||||
<div class="operation-bg"> ></div>
|
|
||||||
<h6>Implication</h6>
|
|
||||||
</div>
|
|
||||||
<div class="operation">
|
|
||||||
<div class="operation-bg"> =</div>
|
|
||||||
<h6>Equivalence</h6>
|
|
||||||
</div>
|
|
||||||
</h6>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div class="wrapper hide close" id="stepsNode">
|
|
||||||
<img src="../img/cross-close-icon.png" class="close-button" onclick="ToggleSteps(false)">
|
|
||||||
<div class="step-by-step" id="stepsWrapper">
|
|
||||||
<h1>Step by step
|
|
||||||
<a href="../Knowledgebase#boolean-algebra" title="Learn more about Algebra of 2-valued Boolean functions"><img src="../img/question-mark.png" class="question-mark-button"></a>
|
|
||||||
</h1>
|
|
||||||
<div class="input-wrap" id="input-wrap">
|
|
||||||
<h1 class="text">1.</h1>
|
|
||||||
<div class="input"><input type="result" id="step1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div class="wrapper hide close" id="truthTableNode">
|
|
||||||
<img src="../img/cross-close-icon.png" class="close-button" onclick="ToggleTruthTable(false)">
|
|
||||||
<div class="step-by-step" id="truthTableWrapper">
|
|
||||||
<h1>Truth Table
|
|
||||||
<a href="../Knowledgebase#boolean-functions" title="Learn more about Boolean functions"><img src="../img/question-mark.png" class="question-mark-button"></a>
|
|
||||||
</h1>
|
|
||||||
<div class="input-wrap" id="input-wrap">
|
|
||||||
<div class="input"><input type="table-start" id="step1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" id="input-wrap">
|
|
||||||
<div class="input"><input type="table-mid" id="step1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" id="input-wrap">
|
|
||||||
<div class="input"><input type="table-end" id="step1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div class="wrapper hide close" id="pdnfNode">
|
|
||||||
<img src="../img/cross-close-icon.png" class="close-button" onclick="TogglePDNF(false)">
|
|
||||||
<div class="step-by-step" id="pdnfWrapper">
|
|
||||||
<h1>Perfect Disjunctive Normal Form
|
|
||||||
<a href="../Knowledgebase#PDNF" title="Learn more about Perfect Disjunctive Normal Form"><img src="../img/question-mark.png" class="question-mark-button"></a>
|
|
||||||
</h1>
|
|
||||||
<div class="input-wrap" id="input-wrap">
|
|
||||||
<div class="input"><input type="result" id="step1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div class="wrapper hide close" id="pcnfNode">
|
|
||||||
<img src="../img/cross-close-icon.png" class="close-button" onclick="TogglePCNF(false)">
|
|
||||||
<div class="step-by-step" id="pcnfWrapper">
|
|
||||||
<h1>Perfect Conjunctive Normal Form
|
|
||||||
<a href="../Knowledgebase#PCNF" title="Learn more about Perfect Conjunctive Normal Form"><img src="../img/question-mark.png" class="question-mark-button"></a>
|
|
||||||
</h1>
|
|
||||||
<div class="input-wrap" id="input-wrap">
|
|
||||||
<div class="input"><input type="result" id="step1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<!-- -----------------------------------JS---------------------------- -->
|
|
||||||
<script src="script.js"></script>
|
|
||||||
|
|
||||||
</body>
|
|
||||||
|
|
||||||
</html>
|
|
@ -1,862 +0,0 @@
|
|||||||
//#region Basic Functionallity
|
|
||||||
|
|
||||||
let maxNumOfValues = 26;
|
|
||||||
let currNumOfValues = 2;
|
|
||||||
|
|
||||||
function AddValue() {
|
|
||||||
|
|
||||||
if (currNumOfValues < 26) {
|
|
||||||
|
|
||||||
let charNum = 65 + currNumOfValues;
|
|
||||||
currNumOfValues++;
|
|
||||||
|
|
||||||
let delBtn = document.querySelectorAll('#delBtn');
|
|
||||||
if (delBtn[delBtn.length - 1]) {
|
|
||||||
delBtn[delBtn.length - 1].style = "display: none;";
|
|
||||||
}
|
|
||||||
|
|
||||||
node = document.getElementById('values');
|
|
||||||
node.insertAdjacentHTML('beforeend', ` <div class="input-wrap">
|
|
||||||
<h1 class="text">Value &#${charNum} = </h1>
|
|
||||||
<div class="input"><input type="value" onkeydown="return checkInputValue(event.key, this.value, this.id)" id="value${currNumOfValues - 1}" placeholder="e.g. 0 or 1"/></div>
|
|
||||||
</div>`);
|
|
||||||
|
|
||||||
} else {
|
|
||||||
alert('You have reached a limint of available values');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
let VALUES = new Set();
|
|
||||||
let userValues = new Array();
|
|
||||||
|
|
||||||
function FetchValues() {
|
|
||||||
|
|
||||||
userValues = new Array();
|
|
||||||
|
|
||||||
for (let i = 0; i < currNumOfValues; i++) {
|
|
||||||
|
|
||||||
let inputField = document.getElementById(`value${i}`);
|
|
||||||
let currCharStr = String.fromCharCode(65 + i);
|
|
||||||
|
|
||||||
if (inputField.value === '1' || inputField.value === 'true' || inputField.value === 'True' || inputField.value === 'TRUE' || inputField.value === 't' || inputField.value === 'T') {
|
|
||||||
VALUES.add(currCharStr);
|
|
||||||
userValues.push([currCharStr, true]);
|
|
||||||
} else if (inputField.value === '0' || inputField.value === 'false' || inputField.value === 'False' || inputField.value === 'FALSE' || inputField.value === 'f' || inputField.value === 'F') {
|
|
||||||
VALUES.add(currCharStr);
|
|
||||||
userValues.push([currCharStr, false]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (const iterator in VALUES) {
|
|
||||||
console.log(iterator, VALUES[iterator]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Evaluate given formula and display the result
|
|
||||||
function Evaluate() {
|
|
||||||
|
|
||||||
// ToggleAll(false);
|
|
||||||
|
|
||||||
FetchValues();
|
|
||||||
|
|
||||||
let formulaField = document.getElementById('formula');
|
|
||||||
|
|
||||||
let formulaChraArray = formulaField.value.split('');
|
|
||||||
let formulaRPNArray = ConvertToRPNArray(formulaChraArray);
|
|
||||||
let formulaValuesRPNArray = ConvertCharsToValues(formulaRPNArray);
|
|
||||||
|
|
||||||
let result = SolveRPNFormula(formulaValuesRPNArray);
|
|
||||||
|
|
||||||
if (result == undefined || formulaValuesRPNArray.some(x => alphabet.indexOf(x) != -1) || formulaValuesRPNArray.some(x => x == undefined)) {
|
|
||||||
formulaField.style.backgroundColor = 'rgba(255, 255, 255, 0)';
|
|
||||||
formulaField.style.backgroundColor = 'rgba(235, 52, 116, 0.7)';
|
|
||||||
formulaField.style.transition = '0.2s';
|
|
||||||
setTimeout(() => formulaField.style.backgroundColor = 'rgba(255, 255, 255, 0)', 600);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
let readableResult = ConvertToReadableResult(result);
|
|
||||||
|
|
||||||
let resultField = document.getElementById('result');
|
|
||||||
resultField.value = readableResult;
|
|
||||||
}
|
|
||||||
|
|
||||||
//#endregion
|
|
||||||
|
|
||||||
//#region Boolean Operations
|
|
||||||
|
|
||||||
function Negation(value) {
|
|
||||||
|
|
||||||
if (value != undefined) { return !value; }
|
|
||||||
}
|
|
||||||
|
|
||||||
function Conjunction(firstValue, secondValue) {
|
|
||||||
|
|
||||||
if (firstValue === true && secondValue === true) {
|
|
||||||
return true;
|
|
||||||
} else if (firstValue === false && secondValue === true || firstValue === true && secondValue === false || firstValue === false && secondValue === false) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function Disjunction(firstValue, secondValue) {
|
|
||||||
|
|
||||||
if (firstValue === true || secondValue === true) {
|
|
||||||
return true;
|
|
||||||
} else if (firstValue === false && secondValue === false) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function Equivalence(firstValue, secondValue) {
|
|
||||||
|
|
||||||
if (firstValue === secondValue) {
|
|
||||||
return true;
|
|
||||||
} else if (firstValue !== secondValue) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//#endregion
|
|
||||||
|
|
||||||
//#region Essential Functions
|
|
||||||
|
|
||||||
function ConvertToRPNArray(chars) {
|
|
||||||
|
|
||||||
let _values_stack = new Array();
|
|
||||||
let _actions_stack = new Array();
|
|
||||||
|
|
||||||
for (let i = 0; i < chars.length; i++) {
|
|
||||||
const element = chars[i];
|
|
||||||
|
|
||||||
if (!OPERATORS.has(element) && !BRACKETS.has(element)) {
|
|
||||||
|
|
||||||
_values_stack.push(element);
|
|
||||||
} else if (OPERATORS.has(element)) {
|
|
||||||
|
|
||||||
while (GetActionPriority(_actions_stack[_actions_stack.length - 1]) >= GetActionPriority(element)) {
|
|
||||||
|
|
||||||
let last = _actions_stack.pop();
|
|
||||||
|
|
||||||
if (last != '(') {
|
|
||||||
_values_stack.push(last);
|
|
||||||
} else {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (_actions_stack[0] == undefined || GetActionPriority(_actions_stack[_actions_stack.length - 1]) < GetActionPriority(element)) {
|
|
||||||
|
|
||||||
_actions_stack.push(element);
|
|
||||||
}
|
|
||||||
} else if (BRACKETS.has(element)) {
|
|
||||||
|
|
||||||
if (element == '(') {
|
|
||||||
|
|
||||||
_actions_stack.push(element);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (element == ')') {
|
|
||||||
|
|
||||||
let _last = _actions_stack.pop();
|
|
||||||
|
|
||||||
while (_last != '(') {
|
|
||||||
|
|
||||||
_values_stack.push(_last);
|
|
||||||
_last = _actions_stack.pop();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
Error('The programm cant solve given formula. Do you typed everything right? Maybe you forgot to define some value?');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
while (_actions_stack[0] != undefined) {
|
|
||||||
|
|
||||||
_values_stack.push(_actions_stack.pop());
|
|
||||||
}
|
|
||||||
|
|
||||||
return _values_stack;
|
|
||||||
}
|
|
||||||
|
|
||||||
function ConvertCharsToValues(RPNArray) {
|
|
||||||
|
|
||||||
let valuesRNPArray = new Array();
|
|
||||||
|
|
||||||
RPNArray.forEach(element => {
|
|
||||||
|
|
||||||
if (VALUES.has(element)) {
|
|
||||||
valuesRNPArray.push(GetValueFromIndex(element));
|
|
||||||
} else if (element !== '(' || element !== ')') {
|
|
||||||
valuesRNPArray.push(element);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
return valuesRNPArray;
|
|
||||||
}
|
|
||||||
|
|
||||||
function SolveRPNFormula(valuesRPNArray) {
|
|
||||||
|
|
||||||
let stepByStepResults = new Array();
|
|
||||||
|
|
||||||
let _stack = new Array();
|
|
||||||
|
|
||||||
for (let i = 0; i < valuesRPNArray.length; i++) {
|
|
||||||
const element = valuesRPNArray[i];
|
|
||||||
|
|
||||||
if (OPERATORS.has(element)) {
|
|
||||||
|
|
||||||
if (element == '!') {
|
|
||||||
|
|
||||||
let _currValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Negation(_currValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
} else if (element == '*') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Conjunction(_firstValue, _secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
} else if (element == '+') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Disjunction(_firstValue, _secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
} else if (element == '>') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Disjunction(Negation(_firstValue), _secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
} else if (element == '=') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Equivalence(_firstValue, _secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
|
|
||||||
_stack.push(element);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return _stack[0];
|
|
||||||
}
|
|
||||||
|
|
||||||
//#endregion
|
|
||||||
|
|
||||||
//#region Step By Step
|
|
||||||
|
|
||||||
// Evalutae formula and display steps in the interface
|
|
||||||
function StepByStep() {
|
|
||||||
|
|
||||||
FetchValues();
|
|
||||||
|
|
||||||
let formulaField = document.getElementById('formula');
|
|
||||||
|
|
||||||
let formulaChraArray = formulaField.value.split('');
|
|
||||||
let formulaRPNArray = ConvertToRPNArray(formulaChraArray);
|
|
||||||
let formulaValuesRPNArray = ConvertCharsToValues(formulaRPNArray);
|
|
||||||
|
|
||||||
let result = SolveRPNFormula(formulaValuesRPNArray);
|
|
||||||
|
|
||||||
if (result == undefined || formulaValuesRPNArray.some(x => alphabet.indexOf(x) != -1) || formulaValuesRPNArray.some(x => x == undefined)) {
|
|
||||||
formulaField.style.backgroundColor = 'rgba(255, 255, 255, 0)';
|
|
||||||
formulaField.style.backgroundColor = 'rgba(235, 52, 116, 0.7)';
|
|
||||||
formulaField.style.transition = '0.2s';
|
|
||||||
setTimeout(() => formulaField.style.backgroundColor = 'rgba(255, 255, 255, 0)', 600);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
let readableResult = ConvertToReadableResult(result);
|
|
||||||
|
|
||||||
let resultField = document.getElementById('result');
|
|
||||||
resultField.value = readableResult;
|
|
||||||
|
|
||||||
let stepsActionsArray = GetCharSteps(formulaRPNArray);
|
|
||||||
let stepsResultsArray = GetStepsResults(formulaValuesRPNArray);
|
|
||||||
|
|
||||||
// console.log(stepsActionsArray);
|
|
||||||
// console.log(stepsResultsArray);
|
|
||||||
|
|
||||||
if (stepsResultsArray.length > 0) {
|
|
||||||
|
|
||||||
ToggleSteps(true);
|
|
||||||
|
|
||||||
for (let i = 0; i < stepsActionsArray.length; i++) {
|
|
||||||
const action = stepsActionsArray[i];
|
|
||||||
const result = stepsResultsArray[i];
|
|
||||||
|
|
||||||
|
|
||||||
stepsWrapper.insertAdjacentHTML('beforeend', ` <div class="input-wrap" id="input-wrap">
|
|
||||||
<h1 class="text">${i+1}. </h1>
|
|
||||||
<div class="input"><input type="result" value="${action} = ${result}" readonly/></div>
|
|
||||||
</div>`);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stepsWrapper.scrollIntoView({ behavior: 'smooth', block: 'center' });
|
|
||||||
|
|
||||||
// Get steps in form of characters
|
|
||||||
function GetCharSteps(RPNArray) {
|
|
||||||
|
|
||||||
let stepsArray = new Array();
|
|
||||||
|
|
||||||
let _stack = new Array();
|
|
||||||
|
|
||||||
for (let i = 0; i < RPNArray.length; i++) {
|
|
||||||
const element = RPNArray[i];
|
|
||||||
|
|
||||||
if (OPERATORS.has(element)) {
|
|
||||||
|
|
||||||
if (element == '!') {
|
|
||||||
|
|
||||||
let _currValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result;
|
|
||||||
|
|
||||||
if (_currValue.length <= 2) {
|
|
||||||
_result = '!'.concat(_currValue);
|
|
||||||
} else {
|
|
||||||
_result = '!'.concat('(').concat(_currValue).concat(')');
|
|
||||||
}
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepsArray.push([_result]);
|
|
||||||
|
|
||||||
} else if (element == '*') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result;
|
|
||||||
|
|
||||||
let _firstHasExclemMark = Boolean(_firstValue.split('').filter(x => x === '!').length);
|
|
||||||
let _secondHasExclemMark = Boolean(_secondValue.split('').filter(x => x === '!').length);
|
|
||||||
|
|
||||||
if (_firstValue.length <= 2 && _secondValue.length <= 2) {
|
|
||||||
_result = _firstValue.concat('*').concat(_secondValue);
|
|
||||||
} else if (_firstValue.length <= 2 && _secondValue.length > 2) {
|
|
||||||
|
|
||||||
if (_secondHasExclemMark) {
|
|
||||||
|
|
||||||
_result = _firstValue.concat('*').concat(_secondValue);
|
|
||||||
} else {
|
|
||||||
_result =
|
|
||||||
_firstValue.concat('*').concat('(').concat(_secondValue).concat(')');
|
|
||||||
}
|
|
||||||
} else if (_firstValue.length > 2 && _secondValue.length <= 2) {
|
|
||||||
|
|
||||||
if (_firstHasExclemMark) {
|
|
||||||
|
|
||||||
_result = _firstValue.concat('*').concat(_secondValue);
|
|
||||||
} else {
|
|
||||||
|
|
||||||
_result = '('.concat(_firstValue).concat(')').concat('*').concat(_secondValue);
|
|
||||||
}
|
|
||||||
} else if (_firstValue.length > 2 && _secondValue.length > 2) {
|
|
||||||
|
|
||||||
if (_firstHasExclemMark && _secondHasExclemMark) {
|
|
||||||
|
|
||||||
_result = _firstValue.concat('*').concat(_secondValue);
|
|
||||||
}
|
|
||||||
if (_firstHasExclemMark && !_secondHasExclemMark) {
|
|
||||||
|
|
||||||
_result = _firstValue.concat('*').concat('(').concat(_secondValue).concat(')');
|
|
||||||
} else if (!_firstHasExclemMark && _secondHasExclemMark) {
|
|
||||||
|
|
||||||
_result = '('.concat(_firstValue).concat(')').concat('*').concat(_secondValue);;
|
|
||||||
} else {
|
|
||||||
|
|
||||||
_result = '('.concat(_firstValue).concat(')').concat('*').concat('(').concat(_secondValue).concat(')');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepsArray.push([_result]);
|
|
||||||
|
|
||||||
} else if (element == '+') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = _firstValue.concat('+').concat(_secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepsArray.push([_result]);
|
|
||||||
|
|
||||||
} else if (element == '>') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = _firstValue.concat('>').concat(_secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepsArray.push([_result]);
|
|
||||||
|
|
||||||
} else if (element == '=') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = _firstValue.concat('=').concat(_secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepsArray.push([_result]);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
|
|
||||||
_stack.push(element);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return stepsArray;
|
|
||||||
// return _stack[0];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Get a result of each step
|
|
||||||
function GetStepsResults(valuesRPNArray) {
|
|
||||||
|
|
||||||
let stepByStepResults = new Array();
|
|
||||||
|
|
||||||
let _stack = new Array();
|
|
||||||
|
|
||||||
for (let i = 0; i < valuesRPNArray.length; i++) {
|
|
||||||
const element = valuesRPNArray[i];
|
|
||||||
|
|
||||||
if (OPERATORS.has(element)) {
|
|
||||||
|
|
||||||
if (element == '!') {
|
|
||||||
|
|
||||||
let _currValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Negation(_currValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
} else if (element == '*') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Conjunction(_firstValue, _secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
} else if (element == '+') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Disjunction(_firstValue, _secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
} else if (element == '>') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Disjunction(Negation(_firstValue), _secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
} else if (element == '=') {
|
|
||||||
|
|
||||||
let _secondValue = _stack.pop();
|
|
||||||
let _firstValue = _stack.pop();
|
|
||||||
|
|
||||||
let _result = Equivalence(_firstValue, _secondValue);
|
|
||||||
|
|
||||||
_stack.push(_result);
|
|
||||||
stepByStepResults.push(ConvertToReadableResult(_result));
|
|
||||||
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
|
|
||||||
_stack.push(element);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return stepByStepResults;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//#endregion
|
|
||||||
|
|
||||||
//#region Truth Table
|
|
||||||
|
|
||||||
// Generate truth table and display it in the interface
|
|
||||||
function BuildTruthTable() {
|
|
||||||
|
|
||||||
let header = document.getElementById('formula').value.match(/[A-Z]/g).filter((c, i) => document.getElementById('formula').value.match(/[A-Z]/g).indexOf(c) == i);
|
|
||||||
let matrix = GenerateTruthTable();
|
|
||||||
DisplayTruthTable(matrix, header);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Generate truth table
|
|
||||||
function GenerateTruthTable() {
|
|
||||||
|
|
||||||
let formulaField = document.getElementById('formula');
|
|
||||||
|
|
||||||
let numColumns = formulaField.value.match(/[A-Z]/g).filter((c, i) => document.getElementById('formula').value.match(/[A-Z]/g).indexOf(c) == i).length;
|
|
||||||
let numRows = Math.pow(2, numColumns);
|
|
||||||
|
|
||||||
// Initializing the truthTable
|
|
||||||
let truthTable = new Array();
|
|
||||||
|
|
||||||
for (let i = 0; i < numRows; i++) {
|
|
||||||
truthTable.push(new Array(numColumns + 1));
|
|
||||||
}
|
|
||||||
|
|
||||||
for (let c = 0; c < numColumns; c++) {
|
|
||||||
|
|
||||||
let period = Math.pow(2, numColumns) / Math.pow(2, c + 1);
|
|
||||||
let zeros = true;
|
|
||||||
|
|
||||||
for (let r = 0; r < numRows; r++) {
|
|
||||||
|
|
||||||
if (zeros) {
|
|
||||||
truthTable[r][c] = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!zeros) {
|
|
||||||
truthTable[r][c] = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
if ((r + 1) % period == 0) {
|
|
||||||
zeros = !zeros;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//Evaluate the result for each row
|
|
||||||
for (let r = 0; r < truthTable.length; r++) {
|
|
||||||
truthTable[r][numColumns] = SolveRPNFormula(ConvertToRPNArray(formulaField.value.split('').map(x => x = ConvertCharsToValues(x, r))));
|
|
||||||
}
|
|
||||||
|
|
||||||
//Additional functions
|
|
||||||
function ConvertCharsToValues(index, row) {
|
|
||||||
return formulaField.value.match(/[A-Z]/g).filter((c, i) => document.getElementById('formula').value.match(/[A-Z]/g).indexOf(c) == i).indexOf(index) != -1 ? truthTable[row][formulaField.value.match(/[A-Z]/g).filter((c, i) => document.getElementById('formula').value.match(/[A-Z]/g).indexOf(c) == i).indexOf(index)] : index;
|
|
||||||
}
|
|
||||||
|
|
||||||
return truthTable;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Display truth table in the interface
|
|
||||||
function DisplayTruthTable(matrix, header) {
|
|
||||||
|
|
||||||
//Display the truth table in the interface
|
|
||||||
ToggleTruthTable(true);
|
|
||||||
|
|
||||||
let truthTableWrapper = document.querySelector('#truthTableWrapper');
|
|
||||||
|
|
||||||
truthTableWrapper.insertAdjacentHTML('beforeend', ` <div class="input-wrap" id="input-wrap">
|
|
||||||
<h1 class="text"></h1>
|
|
||||||
<div class="input"><input type="table-start" value="${header.join(' ')} : Result" readonly/></div>
|
|
||||||
</div>`);
|
|
||||||
|
|
||||||
let type = 'table-start';
|
|
||||||
|
|
||||||
for (let r = 0; r < matrix.length; r++) {
|
|
||||||
|
|
||||||
if (r == matrix.length - 1) {
|
|
||||||
type = 'table-end';
|
|
||||||
} else if (type != 0) {
|
|
||||||
type = 'table-mid';
|
|
||||||
}
|
|
||||||
|
|
||||||
let result = matrix[r].pop();
|
|
||||||
|
|
||||||
truthTableWrapper.insertAdjacentHTML('beforeend', ` <div class="input-wrap" id="input-wrap">
|
|
||||||
<h1 class="text"></h1>
|
|
||||||
<div class="input"><input type="${type}" value="${matrix[r].map(x => x = ConvertToReadableResult(x)).join(' ')} : ${ConvertToReadableResult(result)}" readonly/></div>
|
|
||||||
</div>`);
|
|
||||||
}
|
|
||||||
|
|
||||||
truthTableWrapper.scrollIntoView({ behavior: 'smooth', block: 'center' });
|
|
||||||
}
|
|
||||||
|
|
||||||
//#endregion
|
|
||||||
|
|
||||||
//#region PDNF & PCNF
|
|
||||||
|
|
||||||
function BuildPDNF() {
|
|
||||||
|
|
||||||
DisplayPDNF(GeneratePDNF());
|
|
||||||
}
|
|
||||||
|
|
||||||
function GeneratePDNF() {
|
|
||||||
|
|
||||||
let pdnf = '';
|
|
||||||
let mintermCount = 0;
|
|
||||||
|
|
||||||
let header = document.getElementById('formula').value.match(/[A-Z]/g).filter((c, i) => document.getElementById('formula').value.match(/[A-Z]/g).indexOf(c) == i);
|
|
||||||
let matrix = GenerateTruthTable();
|
|
||||||
|
|
||||||
for (let r = 0; r < matrix.length; r++) {
|
|
||||||
if (matrix[r][matrix[r].length - 1] == 1) {
|
|
||||||
|
|
||||||
pdnf += mintermCount != 0 ? '+(' : '(';
|
|
||||||
|
|
||||||
for (let c = 0; c < matrix[r].length - 1; c++) {
|
|
||||||
pdnf += matrix[r][c] == 0 ? '!' + header[c] : header[c];
|
|
||||||
pdnf += c != matrix[r].length - 2 ? '*' : '';
|
|
||||||
}
|
|
||||||
|
|
||||||
pdnf += ')';
|
|
||||||
mintermCount++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return pdnf;
|
|
||||||
}
|
|
||||||
|
|
||||||
function DisplayPDNF(pdnf) {
|
|
||||||
|
|
||||||
TogglePDNF(true);
|
|
||||||
|
|
||||||
let Wrapper = document.querySelector('#pdnfWrapper');
|
|
||||||
|
|
||||||
Wrapper.insertAdjacentHTML('beforeend', ` <div class="input-wrap" id="input-wrap">
|
|
||||||
<h1 class="text"></h1>
|
|
||||||
<div class="input"><input type="result" value="${pdnf}" readonly/></div>
|
|
||||||
</div>`);
|
|
||||||
|
|
||||||
Wrapper.scrollIntoView({ behavior: 'smooth', block: 'center' });
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
function BuildPCNF() {
|
|
||||||
|
|
||||||
DisplayPCNF(GeneratePCNF());
|
|
||||||
}
|
|
||||||
|
|
||||||
function GeneratePCNF() {
|
|
||||||
|
|
||||||
let pcnf = '';
|
|
||||||
let maxtermCount = 0;
|
|
||||||
|
|
||||||
let header = document.getElementById('formula').value.match(/[A-Z]/g).filter((c, i) => document.getElementById('formula').value.match(/[A-Z]/g).indexOf(c) == i);
|
|
||||||
|
|
||||||
let matrix = GenerateTruthTable();
|
|
||||||
|
|
||||||
for (let r = 0; r < matrix.length; r++) {
|
|
||||||
if (matrix[r][matrix[r].length - 1] == 0) {
|
|
||||||
|
|
||||||
pcnf += maxtermCount != 0 ? '*(' : '(';
|
|
||||||
|
|
||||||
for (let c = 0; c < matrix[r].length - 1; c++) {
|
|
||||||
pcnf += matrix[r][c] == 1 ? '!' + header[c] : header[c];
|
|
||||||
pcnf += c != matrix[r].length - 2 ? '+' : '';
|
|
||||||
}
|
|
||||||
|
|
||||||
pcnf += ')';
|
|
||||||
maxtermCount++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return pcnf;
|
|
||||||
}
|
|
||||||
|
|
||||||
function DisplayPCNF(pcnf) {
|
|
||||||
|
|
||||||
TogglePCNF(true);
|
|
||||||
|
|
||||||
let Wrapper = document.querySelector('#pcnfWrapper');
|
|
||||||
|
|
||||||
Wrapper.insertAdjacentHTML('beforeend', ` <div class="input-wrap" id="input-wrap">
|
|
||||||
<h1 class="text"></h1>
|
|
||||||
<div class="input"><input type="result" value="${pcnf}" readonly/></div>
|
|
||||||
</div>`);
|
|
||||||
|
|
||||||
Wrapper.scrollIntoView({ behavior: 'smooth', block: 'center' });
|
|
||||||
}
|
|
||||||
//#endregion
|
|
||||||
|
|
||||||
//#region Additional Functions (Essential too)
|
|
||||||
|
|
||||||
function ToggleSteps(show) {
|
|
||||||
|
|
||||||
let Node = document.querySelector('#stepsNode');
|
|
||||||
let Wrapper = document.querySelector('#stepsWrapper');
|
|
||||||
|
|
||||||
if (show) {
|
|
||||||
Node.classList.remove('hide');
|
|
||||||
Node.classList.remove('close');
|
|
||||||
Wrapper.querySelectorAll('#input-wrap').forEach((element) => {
|
|
||||||
element.remove();
|
|
||||||
});
|
|
||||||
} else {
|
|
||||||
Node.classList.add('close');
|
|
||||||
setTimeout(() => Node.classList.add('hide'), 600);
|
|
||||||
document.body.scrollIntoView({ behavior: 'smooth', block: 'start' });
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function ToggleTruthTable(show) {
|
|
||||||
|
|
||||||
let Node = document.querySelector('#truthTableNode');
|
|
||||||
let Wrapper = document.querySelector('#truthTableWrapper');
|
|
||||||
|
|
||||||
if (show) {
|
|
||||||
Node.classList.remove('hide');
|
|
||||||
Node.classList.remove('close');
|
|
||||||
Wrapper.querySelectorAll('#input-wrap').forEach((element) => {
|
|
||||||
element.remove();
|
|
||||||
});
|
|
||||||
} else {
|
|
||||||
Node.classList.add('close');
|
|
||||||
setTimeout(() => Node.classList.add('hide'), 600);
|
|
||||||
document.body.scrollIntoView({ behavior: 'smooth', block: 'start' });
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function TogglePDNF(show) {
|
|
||||||
|
|
||||||
let Node = document.querySelector('#pdnfNode');
|
|
||||||
let Wrapper = document.querySelector('#pdnfWrapper');
|
|
||||||
|
|
||||||
if (show) {
|
|
||||||
Node.classList.remove('hide');
|
|
||||||
Node.classList.remove('close');
|
|
||||||
Wrapper.querySelectorAll('#input-wrap').forEach((element) => {
|
|
||||||
element.remove();
|
|
||||||
});
|
|
||||||
} else {
|
|
||||||
Node.classList.add('close');
|
|
||||||
setTimeout(() => Node.classList.add('hide'), 600);
|
|
||||||
document.body.scrollIntoView({ behavior: 'smooth', block: 'start' });
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function TogglePCNF(show) {
|
|
||||||
|
|
||||||
let Node = document.querySelector('#pcnfNode');
|
|
||||||
let Wrapper = document.querySelector('#pcnfWrapper');
|
|
||||||
|
|
||||||
if (show) {
|
|
||||||
Node.classList.remove('hide');
|
|
||||||
Node.classList.remove('close');
|
|
||||||
Wrapper.querySelectorAll('#input-wrap').forEach((element) => {
|
|
||||||
element.remove();
|
|
||||||
});
|
|
||||||
} else {
|
|
||||||
Node.classList.add('close');
|
|
||||||
setTimeout(() => Node.classList.add('hide'), 600);
|
|
||||||
document.body.scrollIntoView({ behavior: 'smooth', block: 'start' });
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// function ToggleAll(show) {
|
|
||||||
// ToggleSteps(show);
|
|
||||||
// ToggleTruthTable(show);
|
|
||||||
// TogglePDNF(show);
|
|
||||||
// TogglePCNF(show);
|
|
||||||
// }
|
|
||||||
|
|
||||||
const OPERATORS = new Set(['!', '*', '+', '>', '=']);
|
|
||||||
const BRACKETS = new Set(['(', ')']);
|
|
||||||
|
|
||||||
function GetActionPriority(action) {
|
|
||||||
|
|
||||||
if (action == '!') {
|
|
||||||
return 5;
|
|
||||||
} else if (action == '*') {
|
|
||||||
return 4;
|
|
||||||
} else if (action == '+' || action == '>' || action == '=') {
|
|
||||||
return 3;
|
|
||||||
} else if (action == '(') {
|
|
||||||
return 2;
|
|
||||||
} else {
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function GetValueFromIndex(valueIndex) {
|
|
||||||
|
|
||||||
for (let i = 0; i < userValues.length; i++) {
|
|
||||||
const element = userValues[i];
|
|
||||||
|
|
||||||
if (element[0] == valueIndex) {
|
|
||||||
return element[1];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function ConvertToReadableResult(unconverted) {
|
|
||||||
|
|
||||||
return unconverted === true ? '1' : '0';
|
|
||||||
}
|
|
||||||
|
|
||||||
function Error(errMsg) {
|
|
||||||
console.log(` [ERROR] ${errMsg}`);
|
|
||||||
}
|
|
||||||
|
|
||||||
//#endregion
|
|
||||||
|
|
||||||
//#region Check Input
|
|
||||||
|
|
||||||
const symbols = ['0', '1'];
|
|
||||||
const specialSymbols = ['!', '*', '+', '=', '>', '(', ')', 'Backspace', 'ArrowLeft', 'ArrowRight', 'Delete', 'Shift'];
|
|
||||||
|
|
||||||
function checkInputValue(key, value, id) {
|
|
||||||
if (value.length < 1 && symbols.indexOf(key) !== -1) {
|
|
||||||
return true;
|
|
||||||
} else if (value.length == 1 && specialSymbols.indexOf(key) !== -1) {
|
|
||||||
return true;
|
|
||||||
} else {
|
|
||||||
function backBg() { document.getElementById(id).style.backgroundColor = 'rgba(255, 255, 255, 0)' }
|
|
||||||
document.getElementById(id).style.backgroundColor = 'rgba(235, 52, 116, 0.7)';
|
|
||||||
document.getElementById(id).style.transition = '0.2s';
|
|
||||||
setTimeout(backBg, 600);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
function checkInputProblem(key, id) {
|
|
||||||
if (alphabet.indexOf(key) != -1 || specialSymbols.indexOf(key) != -1) {
|
|
||||||
return true;
|
|
||||||
} else {
|
|
||||||
function backBg() { document.getElementById(id).style.backgroundColor = 'rgba(255, 255, 255, 0)' }
|
|
||||||
document.getElementById(id).style.backgroundColor = 'rgba(235, 52, 116, 0.7)';
|
|
||||||
document.getElementById(id).style.transition = '0.2s';
|
|
||||||
setTimeout(backBg, 600);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K',
|
|
||||||
'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
|
|
||||||
'W', 'X', 'Y', 'Z'
|
|
||||||
];
|
|
||||||
|
|
||||||
//#endregion
|
|
BIN
Info/favicon.png
BIN
Info/favicon.png
Binary file not shown.
Before Width: | Height: | Size: 527 B |
@ -1,55 +0,0 @@
|
|||||||
<!DOCTYPE html>
|
|
||||||
<html lang="en">
|
|
||||||
|
|
||||||
<head>
|
|
||||||
<meta charset="UTF-8">
|
|
||||||
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
||||||
<link rel="icon" type="image/x-icon" href="favicon.png">
|
|
||||||
<title>Info</title>
|
|
||||||
|
|
||||||
<link rel="stylesheet" href="../style.css">
|
|
||||||
|
|
||||||
</head>
|
|
||||||
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<div class="gradient"></div>
|
|
||||||
|
|
||||||
<div class="container">
|
|
||||||
|
|
||||||
<header>
|
|
||||||
<div class="content">
|
|
||||||
<h3><a href="../">CDM Utils</a></h3>
|
|
||||||
<div class="theme">
|
|
||||||
<h3><a href="../Set-Algebra/">Set Algebra</a></h3>
|
|
||||||
<h3><a href="../Boolean-Algebra/">Boolean Algebra</a></h3>
|
|
||||||
<h3><a href="../Knowledgebase/">Knowledgebase</a></h3>
|
|
||||||
<h3><a class="current" href="">Info</a></h3>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
</header>
|
|
||||||
|
|
||||||
<h1 class="title">Info page</h1>
|
|
||||||
|
|
||||||
<div class="wrapper no-top-margin knowledge">
|
|
||||||
<div class="knowledge-wrap">
|
|
||||||
|
|
||||||
<h1 class="knowledge-main-title" id="set-theory">About the project</h1>
|
|
||||||
<!-- <h1 class="knowledge-title"></h1> -->
|
|
||||||
<h6 class="knowledge-desc" style="text-align: center;"> This web application is made by two freshmens as a firs semester project at a Kharkov National Uneversity of Radio Electronics </h6>
|
|
||||||
<h6 class="knowledge-desc" style="text-align: center;"> </h6>
|
|
||||||
|
|
||||||
<h1 class="knowledge-main-title" id="set-theory">Source code</h1>
|
|
||||||
<h6 class="knowledge-desc" style="text-align: center;"> All source code is available at <a href="https://github.com/cuqmbr/cdm-utils" target="_blank">this</a> GitHub page </h6>
|
|
||||||
<h6 class="knowledge-desc" style="text-align: center;"> </h6>
|
|
||||||
|
|
||||||
<h1 class="knowledge-main-title" id="set-theory">Credits</h1>
|
|
||||||
<h6 class="knowledge-desc" style="text-align: center;"> Designed by <a href="http://shchoholev.zzz.com.ua/" target="_blank">Serhii Shchoholev</a>, programmed by <a href="https://www.cuqmbr.pp.ua/" target="_blank">cuqmbr</a> </h6>
|
|
||||||
<h6 class="knowledge-desc" style="text-align: center;"> To be honest, we all did a little bit of everything ;) </h6>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</body>
|
|
||||||
|
|
||||||
</html>
|
|
Binary file not shown.
Before Width: | Height: | Size: 527 B |
@ -1,295 +0,0 @@
|
|||||||
<!DOCTYPE html>
|
|
||||||
<html lang="en">
|
|
||||||
|
|
||||||
<head>
|
|
||||||
<meta charset="UTF-8">
|
|
||||||
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
||||||
<title>Knowledgebase</title>
|
|
||||||
<link rel="icon" type="image/x-icon" href="favicon.png">
|
|
||||||
<link rel="stylesheet" href="../style.css">
|
|
||||||
</head>
|
|
||||||
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<div class="gradient"></div>
|
|
||||||
|
|
||||||
<div class="container">
|
|
||||||
|
|
||||||
<header>
|
|
||||||
<div class="content">
|
|
||||||
<h3><a href="../">CDM Utils</a></h3>
|
|
||||||
<div class="theme">
|
|
||||||
<h3><a href="../Set-Algebra/">Set Algebra</a></h3>
|
|
||||||
<h3><a href="../Boolean-Algebra/">Boolean Algebra</a></h3>
|
|
||||||
<h3><a class="current" href="">Knowledgebase</a></h3>
|
|
||||||
<h3><a href="../Info">Info</a></h3>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
</header>
|
|
||||||
|
|
||||||
<h1 class="title">Knowledgebase</h1>
|
|
||||||
|
|
||||||
<div class="wrapper no-top-margin knowledge">
|
|
||||||
<div class="knowledge-wrap">
|
|
||||||
|
|
||||||
<!-- Set Theory -->
|
|
||||||
|
|
||||||
<h1 class="knowledge-main-title" id="set-theory">Set Theory</h1>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title">Basic concepts</h1>
|
|
||||||
<h6 class="knowledge-desc">   The notion of a set is one of the initial notions of mathematics that cannot be defined quite formally. Synonyms of the term “set” are: a collection, a group, a class, etc. Approximately, one may say that a set is a collection of objects or ideas called elements of the set. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   Sets are usually denoted by Latin capital letters and their elements – by corresponding small letters: </h6>
|
|
||||||
<h6 class="knowledge-desc">   A = {a, b, c, d}, B = {b, d}, C = {a, b, c, d}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   If set B contains only elements that belong to set A then B is said to be a <strong class="strong"> subset </strong> of A: </h6>
|
|
||||||
<h6 class="knowledge-desc">   B ⊂ A (proper subset, not all elements of A are in B), C ⊆ A (C may have all elements of A or may not). </h6>
|
|
||||||
<h6 class="knowledge-desc">   For any set A the following is true: Ø ⊆ A, A ⊆ A. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   Two sets A and B are <strong class="strong"> equal </strong> (denoted by A = B) if they consist of the same elements. This is equivalent to the condition that, for arbitrary x, if it is contained in A then it follows that x is in set B as well, and vice versa. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   The number of elements in a set A is called the <strong class="strong"> cardinality </strong> of A and is denoted |A|. If A = {a, b, c, d} then |A|= 4. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   Set P(A) is a <strong class="strong"> power </strong> set of A. P(A) contains all possible subsets of set A. </h6>
|
|
||||||
<h6 class="knowledge-desc">   Ex.: A = {a, b}. P(A) = {Ø, {a}, {b}, {a, b}}. Elements of a power set are sets themselves. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   Sets A and B (finite or infinite) are called <strong class="strong"> equivalent </strong> (A ≈ B) if they have the same cardinality. </h6>
|
|
||||||
<h6 class="knowledge-desc">   Ex.: A = {1, 7, 10, 15}, B = {a, b, c, d}. |A| = |B| ⇨ A ≈ B. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title">Operations on sets</h1>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Union </strong> of sets A and B is a set C that contains only elements belonging to A or B. </h6>
|
|
||||||
<h6 class="knowledge-desc">   C = A ∪ B. A ∪ B = {x | x ∈ A or x ∈ B or both}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   Ex.: A = {a, b}, B = {b, c, d}. C = A ∪ B = {a, b} ∪ {b, c, d} = {a, b, c, d}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Intersection </strong> of sets A and B is a set C which contains elements that belong both to A and B. </h6>
|
|
||||||
<h6 class="knowledge-desc">   C = A ∩ B. C = A ∩ B. C = {x | x ∈ A and x ∈ B}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   Ex.: A = {a, b, c, d}, B = {b, d, f, h}. C = A ∩ B = {a, b, c, d} ∩ {b, d, f, h} = {b, d}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Compliment </strong> of a set A is a set B that contains all the elements of the universal set that does not belong to A. </h6>
|
|
||||||
<h6 class="knowledge-desc">   C = <strong class="overline">A</strong>. C = {x | x ∈ U and x ∉ A}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   Ex.: U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {0, 2, 4, 6, 8}. C = <strong class="overline">A</strong> = {1, 3, 5, 7, 9}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Difference </strong> of sets A and B is a set C that consists of the elements that belong to A and don’t belong to B. </h6>
|
|
||||||
<h6 class="knowledge-desc">   C = A – B. C = {x │ x A ∈ and x ∉ B}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   Ex.: A = {0, 1, 2, 3, 4}, B = {0, 2, 4, 6}. C = A - B = {0, 1, 2, 3, 4} - {0, 2, 4, 6} = {1, 3}. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
|
|
||||||
<!-- Set albebra -->
|
|
||||||
|
|
||||||
<h1 class="knowledge-main-title" id="set-algebra">Algebra Of Sets</h1>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title">Algebra of sets</h1>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Definition: </strong> Set algebra is a set of all subsets of U plus {∪, /, ‾ }. </h6>
|
|
||||||
<h6 class="knowledge-desc">   An algebra is a set of elements of an arbitrary nature together with a number of operations defined on the elements of the given set. The nature of the set elements, the number and the properties of the operations determine the specific type of an algebra.</h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title"> Laws of algebra of sets: </h6>
|
|
||||||
<h6 class="knowledge-desc">   In our application there is no functionality for simplifying equations, but for manual calculations the following laws will be very useful </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   1. Laws of simplification: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) A ∪ A = A; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) A ∩ A = A; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   2. Commutative laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) A ∪ B = B ∪ A; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) A ∩ B = B ∩ A; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   3. Associative laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) A ∪ (B ∪ C) = (A ∪ B) ∪ C; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) A ∩ (B ∩ C) = (A ∩ B) ∩ C; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   4. Distributive laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C); </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   5. Elimination laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) A ∪ (A ∩ B) = A; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) A ∩ (A ∪ B) = A; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   6. Laws for constants: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) A ∪ U = U; A ∩ Ø = Ø; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) A ∪ Ø = A; A ∩ U = A; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   7. The law of double complement: </h6>
|
|
||||||
<h6 class="knowledge-desc">   A̿ = A; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   8. The law of the excluded middle: </h6>
|
|
||||||
<h6 class="knowledge-desc">   A ∪ <strong class="overline">A</strong> = U; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   9. The law of contradiction: </h6>
|
|
||||||
<h6 class="knowledge-desc">   A ∩ <strong class="overline">A</strong> = Ø; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   10. De Morgan's laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) <strong class="overline">(A ∪ B)</strong> = <strong class="overline">A</strong> ∩ <strong class="overline">B</strong>; </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) <strong class="overline">(A ∩ B)</strong> = <strong class="overline">A</strong> ∪ <strong class="overline">B</strong>; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   All these variables A, B, C, ... represent not just individual sets but arbitrary formulas of the algebra of sets. All these laws can be used for equivalent transformations of the formulas of the set algebra usually in order to simplify them. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Example: </strong> simplify the formula. </h6>
|
|
||||||
<h6 class="knowledge-desc">   A ∪ B ∩ <strong class="overline">(A ∩ B)</strong> = A ∪ B ∩ (<strong class="overline">A</strong> ∪ <strong class="overline">B</strong>) = A ∪ (B ∩ <strong class="overline">A</strong> ∪ B ∩ <strong class="overline">B</strong>) = A ∪ (B ∩ <strong class="overline">A</strong>) = (A ∪ B) ∩ (A ∪ <strong class="overline">A</strong>) = A ∪ B </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
|
|
||||||
<!-- Boolean functions -->
|
|
||||||
|
|
||||||
<h1 class="knowledge-main-title" id="boolean-functions">Boolean Functions</h1>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title">Boolean functions</h1>
|
|
||||||
<h6 class="knowledge-desc">   A function y = f(x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>) where y, x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> ∈ {0;1} is called an n-place Boolean function. Any Boolean function can be presented by a formula (an expression consisting of Boolean functions and their compositions).</h6>
|
|
||||||
<h6 class="knowledge-desc">   It is possible to construct a truth table for a boolean function by its number and the number of arguments n. </h6>
|
|
||||||
|
|
||||||
<div class="step-by-step" style="margin-top: 0px; margin-bottom: 0px;">
|
|
||||||
<h1 class="knowledge-title" style="margin-bottom: 0px;">   Ex.: Truth Tabel for: f(x<sub>1</sub>, x<sub>2</sub>) = x<sub>1</sub> ^ x<sub>2</sub> </h1>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-start" value="x₁ x₂ : f(x₁, x₂)" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 0 : 0" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 1 : 0" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="1 0 : 0" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-end" value="1 1 : 1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
|
|
||||||
<!-- Algebra of 2-valued Boolean functions -->
|
|
||||||
|
|
||||||
<h1 class="knowledge-main-title" id="boolean-algebra">Algebra of 2-valued Boolean functions</h1>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title">Algebra of 2-valued Boolean functions</h1>
|
|
||||||
<h6 class="knowledge-desc">   Reminder: 2-element Boolean algebra = {0,1} + {^, ∨, ‾ }. </h6>
|
|
||||||
<h6 class="knowledge-desc">   Priority of Boolean functions in formulas: ( ), ‾, ^, ∨. </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title"> Laws of 2-element Boolean algebra: </h6>
|
|
||||||
<h6 class="knowledge-desc">   In our application there is no functionality for simplifying equations, but for manual calculations the following laws will be very useful </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   1. Commutative laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ∨ b = b ∨ b; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) a ^ b = a ^ b; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   2. Associative laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ∨ (b ∪ c) = (a ∨ b) ∨ c; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) a ^ (b ^ c) = (a ^ b) ^ c; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   3. Distributive laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ∨ (b ∨ c) = (a ∨ b) ^ (a ∨ c) </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) a ^ (b ∨ c) = a ^ b ∨ a ^ c; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   4. Elimination laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ∨ a ^ b = a; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) a ^ (a ∨ b) = a; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   5. Laws for constants: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ∨ 0 = a; a ∨ 1 = 1; </h6>
|
|
||||||
<h6 class="knowledge-desc">   b) a ^ 0 = 0; a ^ 1 = a; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   6. Double negation law: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a̿ = a; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   7. Idempotent laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ∨ a = a; </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ^ a = a; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   8. Negations laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ∨ <strong class="overline"> a </strong> = 1 (excluded middle); </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) a ^ <strong class="overline"> a </strong> = 0; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   9. De Morgan’s laws: </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) <strong class="overline">(a ∨ b)</strong> = <strong class="overline">a</strong> ^ <strong class="overline">b</strong>; </h6>
|
|
||||||
<h6 class="knowledge-desc">   a) <strong class="overline">(a ^ b)</strong> = <strong class="overline">a</strong> ∨ <strong class="overline">b</strong>; </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title" id="PDNF">Perfect Disjunctive Normal Form (PDNF)</h1>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Definition: </strong> A formula of a Boolean function which is a disjunction of its minterms is called its <strong class="strong"> Perfect Disjunctive Normal Form (PDNF)</strong>. In technical papers such a formula is called a <strong class="strong"> Complete Sum of Products Form (CSPF)</strong>. </h6>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Minterm </strong> is a product of all the literals (with or without complement). </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   Building a formula by a truth table. A method based on 1-values of a Boolean function (Method for building PDNF): </h6>
|
|
||||||
|
|
||||||
<div class="step-by-step" style="margin-top: 0px; margin-bottom: 15px;">
|
|
||||||
<h1 class="knowledge-title" style="margin-bottom: 0px;">   Given: a 2-values Boolean function: </h1>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-start" value="x y z : f(x, y, z)" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 0 0 0" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 0 1 1̲ ⟶ x̅ ^ y̅ ^ z̅ = 1 - minterm" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 1 0 0" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 1 1 1̲ ⟶ x̅ ^ y ^ z = 1 - minterm" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="1 0 0 1̲ ⟶ x̅ ^ y̅ ^ z = 1 - minterm" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="1 0 1 0" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="1 1 0 0" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-end" value="1 1 1 0" readonly/></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<h6 class="knowledge-desc">   x̅^y̅^z̅ ∨ x̅^y^z ∨ x̅^y̅^z = x̅y̅z̅ ∨ x̅yz ∨ x̅y̅z - PDNF </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
|
|
||||||
<h1 class="knowledge-title" id="PCNF">Perfect Conjunctive Normal Form (PCNF)</h1>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Definition: </strong> A formula which is a conjunction of maxterms is called the <strong class="strong"> Perfect Conjunctive Normal Form (PCNF)</strong>. or, more frequently, <strong class="strong"> Complete Product-of-Sums Form (CPSF)</strong>. </h6>
|
|
||||||
<h6 class="knowledge-desc">   <strong class="strong"> Maxterm </strong> is a product of all the literals (with or without complement). </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
<h6 class="knowledge-desc">   Building a formula by a truth table. A method based on 1-values of a Boolean function (Method for building PCNF): </h6>
|
|
||||||
|
|
||||||
<div class="step-by-step" style="margin-top: 0px; margin-bottom: 15px;">
|
|
||||||
<h1 class="knowledge-title" style="margin-bottom: 0px;">   Given: a 2-values Boolean function: </h1>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-start" value="x y z : f(x, y, z)" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 0 0 0̲ ⟶ x ∨ y ∨ z = 0 - maxterm" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 0 1 1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 1 0 0̲ ⟶ x ∨ y̅ ∨ z = 0 - maxterm" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="0 1 1 1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="1 0 0 1" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="1 0 1 0̲ ⟶ x̅ ∨ y ∨ z̅ = 0 - maxterm" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-mid" value="1 1 0 0̲ ⟶ x̅ ∨ y̅ ∨ z = 0 - maxterm" readonly/></div>
|
|
||||||
</div>
|
|
||||||
<div class="input-wrap" style="width: 88%;">
|
|
||||||
<div class="input"><input type="table-end" value="1 1 1 0̲ ⟶ x̅ ∨ y̅ ∨ z̅ = 0 - maxterm" readonly/></div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<h6 class="knowledge-desc">   (x∨y∨z) ^ (x∨y̅∨z) ^ (x̅∨y∨z̅) ^ (x̅∨y̅∨z) ^ (x̅∨y̅∨z̅) - PCNF </h6>
|
|
||||||
<h6 class="knowledge-desc">   </h6>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</body>
|
|
||||||
|
|
||||||
</html>
|
|
339
LICENSE
339
LICENSE
@ -1,339 +0,0 @@
|
|||||||
GNU GENERAL PUBLIC LICENSE
|
|
||||||
Version 2, June 1991
|
|
||||||
|
|
||||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
||||||
Everyone is permitted to copy and distribute verbatim copies
|
|
||||||
of this license document, but changing it is not allowed.
|
|
||||||
|
|
||||||
Preamble
|
|
||||||
|
|
||||||
The licenses for most software are designed to take away your
|
|
||||||
freedom to share and change it. By contrast, the GNU General Public
|
|
||||||
License is intended to guarantee your freedom to share and change free
|
|
||||||
software--to make sure the software is free for all its users. This
|
|
||||||
General Public License applies to most of the Free Software
|
|
||||||
Foundation's software and to any other program whose authors commit to
|
|
||||||
using it. (Some other Free Software Foundation software is covered by
|
|
||||||
the GNU Lesser General Public License instead.) You can apply it to
|
|
||||||
your programs, too.
|
|
||||||
|
|
||||||
When we speak of free software, we are referring to freedom, not
|
|
||||||
price. Our General Public Licenses are designed to make sure that you
|
|
||||||
have the freedom to distribute copies of free software (and charge for
|
|
||||||
this service if you wish), that you receive source code or can get it
|
|
||||||
if you want it, that you can change the software or use pieces of it
|
|
||||||
in new free programs; and that you know you can do these things.
|
|
||||||
|
|
||||||
To protect your rights, we need to make restrictions that forbid
|
|
||||||
anyone to deny you these rights or to ask you to surrender the rights.
|
|
||||||
These restrictions translate to certain responsibilities for you if you
|
|
||||||
distribute copies of the software, or if you modify it.
|
|
||||||
|
|
||||||
For example, if you distribute copies of such a program, whether
|
|
||||||
gratis or for a fee, you must give the recipients all the rights that
|
|
||||||
you have. You must make sure that they, too, receive or can get the
|
|
||||||
source code. And you must show them these terms so they know their
|
|
||||||
rights.
|
|
||||||
|
|
||||||
We protect your rights with two steps: (1) copyright the software, and
|
|
||||||
(2) offer you this license which gives you legal permission to copy,
|
|
||||||
distribute and/or modify the software.
|
|
||||||
|
|
||||||
Also, for each author's protection and ours, we want to make certain
|
|
||||||
that everyone understands that there is no warranty for this free
|
|
||||||
software. If the software is modified by someone else and passed on, we
|
|
||||||
want its recipients to know that what they have is not the original, so
|
|
||||||
that any problems introduced by others will not reflect on the original
|
|
||||||
authors' reputations.
|
|
||||||
|
|
||||||
Finally, any free program is threatened constantly by software
|
|
||||||
patents. We wish to avoid the danger that redistributors of a free
|
|
||||||
program will individually obtain patent licenses, in effect making the
|
|
||||||
program proprietary. To prevent this, we have made it clear that any
|
|
||||||
patent must be licensed for everyone's free use or not licensed at all.
|
|
||||||
|
|
||||||
The precise terms and conditions for copying, distribution and
|
|
||||||
modification follow.
|
|
||||||
|
|
||||||
GNU GENERAL PUBLIC LICENSE
|
|
||||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
|
||||||
|
|
||||||
0. This License applies to any program or other work which contains
|
|
||||||
a notice placed by the copyright holder saying it may be distributed
|
|
||||||
under the terms of this General Public License. The "Program", below,
|
|
||||||
refers to any such program or work, and a "work based on the Program"
|
|
||||||
means either the Program or any derivative work under copyright law:
|
|
||||||
that is to say, a work containing the Program or a portion of it,
|
|
||||||
either verbatim or with modifications and/or translated into another
|
|
||||||
language. (Hereinafter, translation is included without limitation in
|
|
||||||
the term "modification".) Each licensee is addressed as "you".
|
|
||||||
|
|
||||||
Activities other than copying, distribution and modification are not
|
|
||||||
covered by this License; they are outside its scope. The act of
|
|
||||||
running the Program is not restricted, and the output from the Program
|
|
||||||
is covered only if its contents constitute a work based on the
|
|
||||||
Program (independent of having been made by running the Program).
|
|
||||||
Whether that is true depends on what the Program does.
|
|
||||||
|
|
||||||
1. You may copy and distribute verbatim copies of the Program's
|
|
||||||
source code as you receive it, in any medium, provided that you
|
|
||||||
conspicuously and appropriately publish on each copy an appropriate
|
|
||||||
copyright notice and disclaimer of warranty; keep intact all the
|
|
||||||
notices that refer to this License and to the absence of any warranty;
|
|
||||||
and give any other recipients of the Program a copy of this License
|
|
||||||
along with the Program.
|
|
||||||
|
|
||||||
You may charge a fee for the physical act of transferring a copy, and
|
|
||||||
you may at your option offer warranty protection in exchange for a fee.
|
|
||||||
|
|
||||||
2. You may modify your copy or copies of the Program or any portion
|
|
||||||
of it, thus forming a work based on the Program, and copy and
|
|
||||||
distribute such modifications or work under the terms of Section 1
|
|
||||||
above, provided that you also meet all of these conditions:
|
|
||||||
|
|
||||||
a) You must cause the modified files to carry prominent notices
|
|
||||||
stating that you changed the files and the date of any change.
|
|
||||||
|
|
||||||
b) You must cause any work that you distribute or publish, that in
|
|
||||||
whole or in part contains or is derived from the Program or any
|
|
||||||
part thereof, to be licensed as a whole at no charge to all third
|
|
||||||
parties under the terms of this License.
|
|
||||||
|
|
||||||
c) If the modified program normally reads commands interactively
|
|
||||||
when run, you must cause it, when started running for such
|
|
||||||
interactive use in the most ordinary way, to print or display an
|
|
||||||
announcement including an appropriate copyright notice and a
|
|
||||||
notice that there is no warranty (or else, saying that you provide
|
|
||||||
a warranty) and that users may redistribute the program under
|
|
||||||
these conditions, and telling the user how to view a copy of this
|
|
||||||
License. (Exception: if the Program itself is interactive but
|
|
||||||
does not normally print such an announcement, your work based on
|
|
||||||
the Program is not required to print an announcement.)
|
|
||||||
|
|
||||||
These requirements apply to the modified work as a whole. If
|
|
||||||
identifiable sections of that work are not derived from the Program,
|
|
||||||
and can be reasonably considered independent and separate works in
|
|
||||||
themselves, then this License, and its terms, do not apply to those
|
|
||||||
sections when you distribute them as separate works. But when you
|
|
||||||
distribute the same sections as part of a whole which is a work based
|
|
||||||
on the Program, the distribution of the whole must be on the terms of
|
|
||||||
this License, whose permissions for other licensees extend to the
|
|
||||||
entire whole, and thus to each and every part regardless of who wrote it.
|
|
||||||
|
|
||||||
Thus, it is not the intent of this section to claim rights or contest
|
|
||||||
your rights to work written entirely by you; rather, the intent is to
|
|
||||||
exercise the right to control the distribution of derivative or
|
|
||||||
collective works based on the Program.
|
|
||||||
|
|
||||||
In addition, mere aggregation of another work not based on the Program
|
|
||||||
with the Program (or with a work based on the Program) on a volume of
|
|
||||||
a storage or distribution medium does not bring the other work under
|
|
||||||
the scope of this License.
|
|
||||||
|
|
||||||
3. You may copy and distribute the Program (or a work based on it,
|
|
||||||
under Section 2) in object code or executable form under the terms of
|
|
||||||
Sections 1 and 2 above provided that you also do one of the following:
|
|
||||||
|
|
||||||
a) Accompany it with the complete corresponding machine-readable
|
|
||||||
source code, which must be distributed under the terms of Sections
|
|
||||||
1 and 2 above on a medium customarily used for software interchange; or,
|
|
||||||
|
|
||||||
b) Accompany it with a written offer, valid for at least three
|
|
||||||
years, to give any third party, for a charge no more than your
|
|
||||||
cost of physically performing source distribution, a complete
|
|
||||||
machine-readable copy of the corresponding source code, to be
|
|
||||||
distributed under the terms of Sections 1 and 2 above on a medium
|
|
||||||
customarily used for software interchange; or,
|
|
||||||
|
|
||||||
c) Accompany it with the information you received as to the offer
|
|
||||||
to distribute corresponding source code. (This alternative is
|
|
||||||
allowed only for noncommercial distribution and only if you
|
|
||||||
received the program in object code or executable form with such
|
|
||||||
an offer, in accord with Subsection b above.)
|
|
||||||
|
|
||||||
The source code for a work means the preferred form of the work for
|
|
||||||
making modifications to it. For an executable work, complete source
|
|
||||||
code means all the source code for all modules it contains, plus any
|
|
||||||
associated interface definition files, plus the scripts used to
|
|
||||||
control compilation and installation of the executable. However, as a
|
|
||||||
special exception, the source code distributed need not include
|
|
||||||
anything that is normally distributed (in either source or binary
|
|
||||||
form) with the major components (compiler, kernel, and so on) of the
|
|
||||||
operating system on which the executable runs, unless that component
|
|
||||||
itself accompanies the executable.
|
|
||||||
|
|
||||||
If distribution of executable or object code is made by offering
|
|
||||||
access to copy from a designated place, then offering equivalent
|
|
||||||
access to copy the source code from the same place counts as
|
|
||||||
distribution of the source code, even though third parties are not
|
|
||||||
compelled to copy the source along with the object code.
|
|
||||||
|
|
||||||
4. You may not copy, modify, sublicense, or distribute the Program
|
|
||||||
except as expressly provided under this License. Any attempt
|
|
||||||
otherwise to copy, modify, sublicense or distribute the Program is
|
|
||||||
void, and will automatically terminate your rights under this License.
|
|
||||||
However, parties who have received copies, or rights, from you under
|
|
||||||
this License will not have their licenses terminated so long as such
|
|
||||||
parties remain in full compliance.
|
|
||||||
|
|
||||||
5. You are not required to accept this License, since you have not
|
|
||||||
signed it. However, nothing else grants you permission to modify or
|
|
||||||
distribute the Program or its derivative works. These actions are
|
|
||||||
prohibited by law if you do not accept this License. Therefore, by
|
|
||||||
modifying or distributing the Program (or any work based on the
|
|
||||||
Program), you indicate your acceptance of this License to do so, and
|
|
||||||
all its terms and conditions for copying, distributing or modifying
|
|
||||||
the Program or works based on it.
|
|
||||||
|
|
||||||
6. Each time you redistribute the Program (or any work based on the
|
|
||||||
Program), the recipient automatically receives a license from the
|
|
||||||
original licensor to copy, distribute or modify the Program subject to
|
|
||||||
these terms and conditions. You may not impose any further
|
|
||||||
restrictions on the recipients' exercise of the rights granted herein.
|
|
||||||
You are not responsible for enforcing compliance by third parties to
|
|
||||||
this License.
|
|
||||||
|
|
||||||
7. If, as a consequence of a court judgment or allegation of patent
|
|
||||||
infringement or for any other reason (not limited to patent issues),
|
|
||||||
conditions are imposed on you (whether by court order, agreement or
|
|
||||||
otherwise) that contradict the conditions of this License, they do not
|
|
||||||
excuse you from the conditions of this License. If you cannot
|
|
||||||
distribute so as to satisfy simultaneously your obligations under this
|
|
||||||
License and any other pertinent obligations, then as a consequence you
|
|
||||||
may not distribute the Program at all. For example, if a patent
|
|
||||||
license would not permit royalty-free redistribution of the Program by
|
|
||||||
all those who receive copies directly or indirectly through you, then
|
|
||||||
the only way you could satisfy both it and this License would be to
|
|
||||||
refrain entirely from distribution of the Program.
|
|
||||||
|
|
||||||
If any portion of this section is held invalid or unenforceable under
|
|
||||||
any particular circumstance, the balance of the section is intended to
|
|
||||||
apply and the section as a whole is intended to apply in other
|
|
||||||
circumstances.
|
|
||||||
|
|
||||||
It is not the purpose of this section to induce you to infringe any
|
|
||||||
patents or other property right claims or to contest validity of any
|
|
||||||
such claims; this section has the sole purpose of protecting the
|
|
||||||
integrity of the free software distribution system, which is
|
|
||||||
implemented by public license practices. Many people have made
|
|
||||||
generous contributions to the wide range of software distributed
|
|
||||||
through that system in reliance on consistent application of that
|
|
||||||
system; it is up to the author/donor to decide if he or she is willing
|
|
||||||
to distribute software through any other system and a licensee cannot
|
|
||||||
impose that choice.
|
|
||||||
|
|
||||||
This section is intended to make thoroughly clear what is believed to
|
|
||||||
be a consequence of the rest of this License.
|
|
||||||
|
|
||||||
8. If the distribution and/or use of the Program is restricted in
|
|
||||||
certain countries either by patents or by copyrighted interfaces, the
|
|
||||||
original copyright holder who places the Program under this License
|
|
||||||
may add an explicit geographical distribution limitation excluding
|
|
||||||
those countries, so that distribution is permitted only in or among
|
|
||||||
countries not thus excluded. In such case, this License incorporates
|
|
||||||
the limitation as if written in the body of this License.
|
|
||||||
|
|
||||||
9. The Free Software Foundation may publish revised and/or new versions
|
|
||||||
of the General Public License from time to time. Such new versions will
|
|
||||||
be similar in spirit to the present version, but may differ in detail to
|
|
||||||
address new problems or concerns.
|
|
||||||
|
|
||||||
Each version is given a distinguishing version number. If the Program
|
|
||||||
specifies a version number of this License which applies to it and "any
|
|
||||||
later version", you have the option of following the terms and conditions
|
|
||||||
either of that version or of any later version published by the Free
|
|
||||||
Software Foundation. If the Program does not specify a version number of
|
|
||||||
this License, you may choose any version ever published by the Free Software
|
|
||||||
Foundation.
|
|
||||||
|
|
||||||
10. If you wish to incorporate parts of the Program into other free
|
|
||||||
programs whose distribution conditions are different, write to the author
|
|
||||||
to ask for permission. For software which is copyrighted by the Free
|
|
||||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
|
||||||
make exceptions for this. Our decision will be guided by the two goals
|
|
||||||
of preserving the free status of all derivatives of our free software and
|
|
||||||
of promoting the sharing and reuse of software generally.
|
|
||||||
|
|
||||||
NO WARRANTY
|
|
||||||
|
|
||||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
|
||||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
|
||||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
|
||||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
|
||||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
||||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
|
||||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
|
||||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
|
||||||
REPAIR OR CORRECTION.
|
|
||||||
|
|
||||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
|
||||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
|
||||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
|
||||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
|
||||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
|
||||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
|
||||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
|
||||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
|
||||||
POSSIBILITY OF SUCH DAMAGES.
|
|
||||||
|
|
||||||
END OF TERMS AND CONDITIONS
|
|
||||||
|
|
||||||
How to Apply These Terms to Your New Programs
|
|
||||||
|
|
||||||
If you develop a new program, and you want it to be of the greatest
|
|
||||||
possible use to the public, the best way to achieve this is to make it
|
|
||||||
free software which everyone can redistribute and change under these terms.
|
|
||||||
|
|
||||||
To do so, attach the following notices to the program. It is safest
|
|
||||||
to attach them to the start of each source file to most effectively
|
|
||||||
convey the exclusion of warranty; and each file should have at least
|
|
||||||
the "copyright" line and a pointer to where the full notice is found.
|
|
||||||
|
|
||||||
<one line to give the program's name and a brief idea of what it does.>
|
|
||||||
Copyright (C) <year> <name of author>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
Also add information on how to contact you by electronic and paper mail.
|
|
||||||
|
|
||||||
If the program is interactive, make it output a short notice like this
|
|
||||||
when it starts in an interactive mode:
|
|
||||||
|
|
||||||
Gnomovision version 69, Copyright (C) year name of author
|
|
||||||
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
|
||||||
This is free software, and you are welcome to redistribute it
|
|
||||||
under certain conditions; type `show c' for details.
|
|
||||||
|
|
||||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
|
||||||
parts of the General Public License. Of course, the commands you use may
|
|
||||||
be called something other than `show w' and `show c'; they could even be
|
|
||||||
mouse-clicks or menu items--whatever suits your program.
|
|
||||||
|
|
||||||
You should also get your employer (if you work as a programmer) or your
|
|
||||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
|
||||||
necessary. Here is a sample; alter the names:
|
|
||||||
|
|
||||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
|
|
||||||
`Gnomovision' (which makes passes at compilers) written by James Hacker.
|
|
||||||
|
|
||||||
<signature of Ty Coon>, 1 April 1989
|
|
||||||
Ty Coon, President of Vice
|
|
||||||
|
|
||||||
This General Public License does not permit incorporating your program into
|
|
||||||
proprietary programs. If your program is a subroutine library, you may
|
|
||||||
consider it more useful to permit linking proprietary applications with the
|
|
||||||
library. If this is what you want to do, use the GNU Lesser General
|
|
||||||
Public License instead of this License.
|
|
42
README.md
42
README.md
@ -1,42 +0,0 @@
|
|||||||
# cdm-utils – Discrete Math web calculator
|
|
||||||
|
|
||||||
Available feature:
|
|
||||||
|
|
||||||
- Set calculus
|
|
||||||
- Boolean calculus including truth tables, PDNF and PCNF
|
|
||||||
- Setp by step calculus
|
|
||||||
|
|
||||||
<!--
|
|
||||||
## Project preview
|
|
||||||
|
|
||||||
<div style="display: flex;">
|
|
||||||
<img src="http://drive.google.com/uc?export=view&id=1tAZcarKvcVKFw90B3eLnDJpCp0zTzX4-" alt="Boolean algebra calculator page" width="480" height="233" border="10" />
|
|
||||||
</div>
|
|
||||||
|
|
||||||
Checkout github-pages deployment [here](https://cuqmbr.github.io/cdm-utils/)
|
|
||||||
-->
|
|
||||||
|
|
||||||
## How to install?
|
|
||||||
|
|
||||||
1. Clone this project
|
|
||||||
2. Done. These are pure html pages :)
|
|
||||||
|
|
||||||
## How to contribute?
|
|
||||||
|
|
||||||
If you want to add a feature, you should follow these steps:
|
|
||||||
|
|
||||||
1. Fork the project
|
|
||||||
2. Make some changes and commit them with [conventional commit message](https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/)
|
|
||||||
3. Submit a PR with a new feature/code
|
|
||||||
|
|
||||||
## Find a bug?
|
|
||||||
|
|
||||||
If you found an issue or would like to submit an improvement to this project, please submit an issue using the issues tab above. If you would like to submit a PR with a fix, reference the issue you created!
|
|
||||||
|
|
||||||
## Development status
|
|
||||||
|
|
||||||
Released – Project is complete
|
|
||||||
|
|
||||||
## Authors' thought
|
|
||||||
|
|
||||||
- cuqmbr: it was my first collab, it helped me to get a few additional points to scholarship ranking :)
|
|
@ -20,12 +20,10 @@
|
|||||||
|
|
||||||
<header>
|
<header>
|
||||||
<div class="content">
|
<div class="content">
|
||||||
<h3><a href="../">CDM Utils</a></h3>
|
<h3><a href="../index.html">CDM</a></h3>
|
||||||
<div class="theme">
|
<div class="theme">
|
||||||
<h3><a href="" class="current">Set Algebra</a></h3>
|
<h3><a href="" class="current">Set Algebra</a></h3>
|
||||||
<h3><a href="../Boolean-Algebra/">Boolean Algebra</a></h3>
|
<h3><a href="../Boolean-Algebra/index.html">Boolean Algebra</a></h3>
|
||||||
<h3><a href="../Knowledgebase/">Knowledgebase</a></h3>
|
|
||||||
<h3><a href="../Info">Info</a></h3>
|
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</header>
|
</header>
|
||||||
@ -85,7 +83,6 @@
|
|||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div class="wrapper hide" id="stepByStep">
|
<div class="wrapper hide" id="stepByStep">
|
||||||
<img src="../img/cross-close-icon.png" class="close-button" onclick="Close()">
|
|
||||||
<div class="step-by-step" id="steps">
|
<div class="step-by-step" id="steps">
|
||||||
<h1>Step by step</h1>
|
<h1>Step by step</h1>
|
||||||
</div>
|
</div>
|
||||||
|
@ -133,7 +133,6 @@ function Evaluate(hide = false) {
|
|||||||
FetchSets();
|
FetchSets();
|
||||||
|
|
||||||
let formulaString = document.getElementById('formula').value;
|
let formulaString = document.getElementById('formula').value;
|
||||||
if (formulaString.length < 1) return;
|
|
||||||
|
|
||||||
let charArray = formulaString.split('');
|
let charArray = formulaString.split('');
|
||||||
let RPN_Array = ConvertFormulaCharArrayToRPN(charArray);
|
let RPN_Array = ConvertFormulaCharArrayToRPN(charArray);
|
||||||
@ -336,10 +335,8 @@ function stepByStep() {
|
|||||||
clear.remove();
|
clear.remove();
|
||||||
step = 0;
|
step = 0;
|
||||||
stepByStep.classList.remove('hide');
|
stepByStep.classList.remove('hide');
|
||||||
stepByStep.classList.remove('close');
|
|
||||||
stepByStep.insertAdjacentHTML('beforeend', ` <div class="step-by-step" id="steps">
|
stepByStep.insertAdjacentHTML('beforeend', ` <div class="step-by-step" id="steps">
|
||||||
<h1>Step by step
|
<h1>Step by step</h1>
|
||||||
<a href="../Knowledgebase#set-algebra" title="Learn more about algebra of sets"><img src="../img/question-mark.png" class="question-mark-button"></a></h1>
|
|
||||||
</div>`);
|
</div>`);
|
||||||
Evaluate();
|
Evaluate();
|
||||||
|
|
||||||
@ -401,11 +398,3 @@ function setToString(set) {
|
|||||||
}
|
}
|
||||||
return '{ ' + str.slice(2, str.length) + ' }';
|
return '{ ' + str.slice(2, str.length) + ' }';
|
||||||
}
|
}
|
||||||
|
|
||||||
function Close() {
|
|
||||||
|
|
||||||
let wrapper = document.getElementById("stepByStep")
|
|
||||||
wrapper.classList.add('close');
|
|
||||||
setTimeout(() => wrapper.classList.add('hide'), 600);
|
|
||||||
document.body.scrollIntoView({ behavior: 'smooth', block: 'start' });
|
|
||||||
}
|
|
Binary file not shown.
Before Width: | Height: | Size: 28 KiB |
Binary file not shown.
Before Width: | Height: | Size: 27 KiB |
12
index.html
12
index.html
@ -6,7 +6,7 @@
|
|||||||
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||||
<link rel="icon" type="image/x-icon" href="img/favicon.png">
|
<link rel="icon" type="image/x-icon" href="img/favicon.png">
|
||||||
<title>CDM Utils</title>
|
<title>CDM Calculator</title>
|
||||||
|
|
||||||
<link rel="stylesheet" href="style.css">
|
<link rel="stylesheet" href="style.css">
|
||||||
|
|
||||||
@ -14,18 +14,14 @@
|
|||||||
|
|
||||||
<body>
|
<body>
|
||||||
|
|
||||||
<div class="gradient"></div>
|
|
||||||
|
|
||||||
<div class="container">
|
<div class="container">
|
||||||
|
|
||||||
<header>
|
<header>
|
||||||
<div class="content">
|
<div class="content">
|
||||||
<h3><a href="" class="current">CDM Utils</a></h3>
|
<h3><a href="">CDM</a></h3>
|
||||||
<div class="theme">
|
<div class="theme">
|
||||||
<h3><a href="Set-Algebra/">Set Algebra</a></h3>
|
<h3><a href="Set-Algebra/index.html">Set Algebra</a></h3>
|
||||||
<h3><a href="Boolean-Algebra/">Boolean Algebra</a></h3>
|
<h3><a href="Boolean-Algebra/index.html">Boolean Algebra</a></h3>
|
||||||
<h3><a href="Knowledgebase/">Knowledgebase</a></h3>
|
|
||||||
<h3><a href="Info">Info</a></h3>
|
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
74
style.css
74
style.css
@ -120,9 +120,6 @@ h6 {
|
|||||||
|
|
||||||
h3 {
|
h3 {
|
||||||
letter-spacing: 0.5px;
|
letter-spacing: 0.5px;
|
||||||
text-align: center;
|
|
||||||
display: grid;
|
|
||||||
align-self: center;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
h2 {
|
h2 {
|
||||||
@ -185,7 +182,6 @@ body {
|
|||||||
border-radius: 12px;
|
border-radius: 12px;
|
||||||
filter: drop-shadow(0px 10px 20px rgba(0, 0, 0, 0.3));
|
filter: drop-shadow(0px 10px 20px rgba(0, 0, 0, 0.3));
|
||||||
padding: 0px 20px;
|
padding: 0px 20px;
|
||||||
transition: 0.5s;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
.wrap-side {
|
.wrap-side {
|
||||||
@ -229,7 +225,7 @@ input[type=value] {
|
|||||||
width: 100%;
|
width: 100%;
|
||||||
height: 44px;
|
height: 44px;
|
||||||
background: none;
|
background: none;
|
||||||
border: 3px solid rgba(255, 255, 255, 0.5);
|
border: 3px solid rgba(255, 255, 255, 0.2);
|
||||||
border-radius: 8px;
|
border-radius: 8px;
|
||||||
font-size: 18px;
|
font-size: 18px;
|
||||||
font-family: Myriad-R;
|
font-family: Myriad-R;
|
||||||
@ -242,7 +238,7 @@ input[type=problem] {
|
|||||||
width: 100%;
|
width: 100%;
|
||||||
height: 44px;
|
height: 44px;
|
||||||
background: none;
|
background: none;
|
||||||
border: 3px solid rgba(255, 255, 255, 0.5);
|
border: 3px solid rgba(255, 255, 255, 0.2);
|
||||||
border-radius: 8px;
|
border-radius: 8px;
|
||||||
font-size: 18px;
|
font-size: 18px;
|
||||||
color: #fff;
|
color: #fff;
|
||||||
@ -379,7 +375,6 @@ input[type=table-end] {
|
|||||||
|
|
||||||
.hide {
|
.hide {
|
||||||
display: none;
|
display: none;
|
||||||
transition: 0.5s;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
.close {
|
.close {
|
||||||
@ -393,26 +388,14 @@ input[type=table-end] {
|
|||||||
transform: translate(0, -3px);
|
transform: translate(0, -3px);
|
||||||
margin: 25px 5px 0px 0px;
|
margin: 25px 5px 0px 0px;
|
||||||
cursor: pointer;
|
cursor: pointer;
|
||||||
width: 20px;
|
width: 12px;
|
||||||
height: 20px;
|
height: 12px;
|
||||||
opacity: 85%;
|
opacity: 75%;
|
||||||
transition: 0.5s;
|
transition: 0.5s;
|
||||||
}
|
}
|
||||||
|
|
||||||
.close-button:hover {
|
.close-button:hover {
|
||||||
opacity: 100%;
|
opacity: 95%;
|
||||||
transition: 0.5s;
|
|
||||||
}
|
|
||||||
|
|
||||||
.question-mark-button {
|
|
||||||
width: 20px;
|
|
||||||
margin: -1px 10px 0px 10px;
|
|
||||||
opacity: 85%;
|
|
||||||
transition: 0.5s;
|
|
||||||
}
|
|
||||||
|
|
||||||
.question-mark-button:hover {
|
|
||||||
opacity: 100%;
|
|
||||||
transition: 0.5s;
|
transition: 0.5s;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -480,41 +463,6 @@ input[type=table-end] {
|
|||||||
max-width: 22px;
|
max-width: 22px;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/* ------------------Knowledgebase-------------- */
|
|
||||||
|
|
||||||
.knowledge {
|
|
||||||
flex-direction: column;
|
|
||||||
}
|
|
||||||
|
|
||||||
.knowledge-wrap {
|
|
||||||
width: 95%;
|
|
||||||
margin: 20px auto;
|
|
||||||
display: flex;
|
|
||||||
flex-direction: column;
|
|
||||||
}
|
|
||||||
|
|
||||||
.knowledge-main-title {
|
|
||||||
margin: 15px auto;
|
|
||||||
}
|
|
||||||
|
|
||||||
.knowledge-title {
|
|
||||||
text-align: left;
|
|
||||||
margin: 5px 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
.knowledge-desc {
|
|
||||||
text-align: justify;
|
|
||||||
}
|
|
||||||
|
|
||||||
.strong {
|
|
||||||
color: white;
|
|
||||||
}
|
|
||||||
|
|
||||||
.overline {
|
|
||||||
text-decoration: overline;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-device-width: 650px) and (min-device-width: 0px) {
|
@media screen and (max-device-width: 650px) and (min-device-width: 0px) {
|
||||||
.wrapper {
|
.wrapper {
|
||||||
flex-direction: column;
|
flex-direction: column;
|
||||||
@ -535,14 +483,4 @@ input[type=table-end] {
|
|||||||
width: auto;
|
width: auto;
|
||||||
text-align: center;
|
text-align: center;
|
||||||
}
|
}
|
||||||
.knowledge-wrap {
|
|
||||||
width: 80%;
|
|
||||||
}
|
|
||||||
h3 {
|
|
||||||
font-size: 14px;
|
|
||||||
}
|
|
||||||
.theme a {
|
|
||||||
margin-left: 15px;
|
|
||||||
font-size: 14px;
|
|
||||||
}
|
|
||||||
}
|
}
|
Loading…
Reference in New Issue
Block a user