0
0
mirror of https://github.com/XTLS/REALITY.git synced 2025-08-22 14:38:35 +00:00

crypto/internal/fips/tls13: implement TLS 1.3 KDF

The new implementation encodes the key schedule into the type system,
which is actually nicer than what we had before.

For #69536

Change-Id: Iddab62c2aae40bc2425a155443576bb9b7aafe03
Reviewed-on: https://go-review.googlesource.com/c/go/+/626836
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
Commit-Queue: Roland Shoemaker <roland@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Daniel McCarney <daniel@binaryparadox.net>
This commit is contained in:
yuhan6665 2025-05-04 14:17:23 -04:00
parent 320c4a6448
commit 4db1386622
18 changed files with 2053 additions and 124 deletions

32
fips140/hash.go Normal file
View File

@ -0,0 +1,32 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fips140
import "io"
// Hash is the common interface implemented by all hash functions. It is a copy
// of [hash.Hash] from the standard library, to avoid depending on security
// definitions from outside of the module.
type Hash interface {
// Write (via the embedded io.Writer interface) adds more data to the
// running hash. It never returns an error.
io.Writer
// Sum appends the current hash to b and returns the resulting slice.
// It does not change the underlying hash state.
Sum(b []byte) []byte
// Reset resets the Hash to its initial state.
Reset()
// Size returns the number of bytes Sum will return.
Size() int
// BlockSize returns the hash's underlying block size.
// The Write method must be able to accept any amount
// of data, but it may operate more efficiently if all writes
// are a multiple of the block size.
BlockSize() int
}

View File

@ -24,6 +24,7 @@ import (
"github.com/xtls/reality/hpke"
"github.com/xtls/reality/mlkem768"
"github.com/xtls/reality/tls13"
)
type clientHandshakeState struct {
@ -325,7 +326,7 @@ func (c *Conn) clientHandshake(ctx context.Context) (err error) {
if err := transcriptMsg(hello, transcript); err != nil {
return err
}
earlyTrafficSecret := suite.deriveSecret(earlySecret, clientEarlyTrafficLabel, transcript)
earlyTrafficSecret := earlySecret.ClientEarlyTrafficSecret(transcript)
c.quicSetWriteSecret(QUICEncryptionLevelEarly, suite.id, earlyTrafficSecret)
}
@ -384,7 +385,7 @@ func (c *Conn) clientHandshake(ctx context.Context) (err error) {
}
func (c *Conn) loadSession(hello *clientHelloMsg) (
session *SessionState, earlySecret, binderKey []byte, err error) {
session *SessionState, earlySecret *tls13.EarlySecret, binderKey []byte, err error) {
if c.config.SessionTicketsDisabled || c.config.ClientSessionCache == nil {
return nil, nil, nil, nil
}
@ -511,8 +512,8 @@ func (c *Conn) loadSession(hello *clientHelloMsg) (
hello.pskBinders = [][]byte{make([]byte, cipherSuite.hash.Size())}
// Compute the PSK binders. See RFC 8446, Section 4.2.11.2.
earlySecret = cipherSuite.extract(session.secret, nil)
binderKey = cipherSuite.deriveSecret(earlySecret, resumptionBinderLabel, nil)
earlySecret = tls13.NewEarlySecret(cipherSuite.hash.New, session.secret)
binderKey = earlySecret.ResumptionBinderKey()
transcript := cipherSuite.hash.New()
if err := computeAndUpdatePSK(hello, binderKey, transcript, cipherSuite.finishedHash); err != nil {
return nil, nil, nil, err

View File

@ -17,6 +17,8 @@ import (
"time"
"github.com/xtls/reality/mlkem768"
"github.com/xtls/reality/tls13"
"golang.org/x/crypto/hkdf"
)
type clientHandshakeStateTLS13 struct {
@ -27,7 +29,7 @@ type clientHandshakeStateTLS13 struct {
keyShareKeys *keySharePrivateKeys
session *SessionState
earlySecret []byte
earlySecret *tls13.EarlySecret
binderKey []byte
certReq *certificateRequestMsgTLS13
@ -35,7 +37,7 @@ type clientHandshakeStateTLS13 struct {
sentDummyCCS bool
suite *cipherSuiteTLS13
transcript hash.Hash
masterSecret []byte
masterSecret *tls13.MasterSecret
trafficSecret []byte // client_application_traffic_secret_0
echContext *echContext
}
@ -89,8 +91,8 @@ func (hs *clientHandshakeStateTLS13) handshake() error {
confTranscript.Write(hs.serverHello.original[:30])
confTranscript.Write(make([]byte, 8))
confTranscript.Write(hs.serverHello.original[38:])
acceptConfirmation := hs.suite.expandLabel(
hs.suite.extract(hs.echContext.innerHello.random, nil),
acceptConfirmation := tls13.ExpandLabel(hs.suite.hash.New,
hkdf.Extract(hs.suite.hash.New, hs.echContext.innerHello.random, nil),
"ech accept confirmation",
confTranscript.Sum(nil),
8,
@ -266,8 +268,8 @@ func (hs *clientHandshakeStateTLS13) processHelloRetryRequest() error {
copy(hrrHello, hs.serverHello.original)
hrrHello = bytes.Replace(hrrHello, hs.serverHello.encryptedClientHello, make([]byte, 8), 1)
confTranscript.Write(hrrHello)
acceptConfirmation := hs.suite.expandLabel(
hs.suite.extract(hs.echContext.innerHello.random, nil),
acceptConfirmation := tls13.ExpandLabel(hs.suite.hash.New,
hkdf.Extract(hs.suite.hash.New, hs.echContext.innerHello.random, nil),
"hrr ech accept confirmation",
confTranscript.Sum(nil),
8,
@ -511,17 +513,14 @@ func (hs *clientHandshakeStateTLS13) establishHandshakeKeys() error {
earlySecret := hs.earlySecret
if !hs.usingPSK {
earlySecret = hs.suite.extract(nil, nil)
earlySecret = tls13.NewEarlySecret(hs.suite.hash.New, nil)
}
handshakeSecret := hs.suite.extract(sharedKey,
hs.suite.deriveSecret(earlySecret, "derived", nil))
handshakeSecret := earlySecret.HandshakeSecret(sharedKey)
clientSecret := hs.suite.deriveSecret(handshakeSecret,
clientHandshakeTrafficLabel, hs.transcript)
clientSecret := handshakeSecret.ClientHandshakeTrafficSecret(hs.transcript)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, clientSecret)
serverSecret := hs.suite.deriveSecret(handshakeSecret,
serverHandshakeTrafficLabel, hs.transcript)
serverSecret := handshakeSecret.ServerHandshakeTrafficSecret(hs.transcript)
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, serverSecret)
if c.quic != nil {
@ -543,8 +542,7 @@ func (hs *clientHandshakeStateTLS13) establishHandshakeKeys() error {
return err
}
hs.masterSecret = hs.suite.extract(nil,
hs.suite.deriveSecret(handshakeSecret, "derived", nil))
hs.masterSecret = handshakeSecret.MasterSecret()
return nil
}
@ -732,10 +730,8 @@ func (hs *clientHandshakeStateTLS13) readServerFinished() error {
// Derive secrets that take context through the server Finished.
hs.trafficSecret = hs.suite.deriveSecret(hs.masterSecret,
clientApplicationTrafficLabel, hs.transcript)
serverSecret := hs.suite.deriveSecret(hs.masterSecret,
serverApplicationTrafficLabel, hs.transcript)
hs.trafficSecret = hs.masterSecret.ClientApplicationTrafficSecret(hs.transcript)
serverSecret := hs.masterSecret.ServerApplicationTrafficSecret(hs.transcript)
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, serverSecret)
err = c.config.writeKeyLog(keyLogLabelClientTraffic, hs.hello.random, hs.trafficSecret)
@ -842,8 +838,7 @@ func (hs *clientHandshakeStateTLS13) sendClientFinished() error {
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, hs.trafficSecret)
if !c.config.SessionTicketsDisabled && c.config.ClientSessionCache != nil {
c.resumptionSecret = hs.suite.deriveSecret(hs.masterSecret,
resumptionLabel, hs.transcript)
c.resumptionSecret = hs.masterSecret.ResumptionMasterSecret(hs.transcript)
}
if c.quic != nil {
@ -887,7 +882,7 @@ func (c *Conn) handleNewSessionTicket(msg *newSessionTicketMsgTLS13) error {
return c.sendAlert(alertInternalError)
}
psk := cipherSuite.expandLabel(c.resumptionSecret, "resumption",
psk := tls13.ExpandLabel(cipherSuite.hash.New, c.resumptionSecret, "resumption",
msg.nonce, cipherSuite.hash.Size())
session := c.sessionState()

View File

@ -23,6 +23,7 @@ import (
"time"
"github.com/xtls/reality/mlkem768"
"github.com/xtls/reality/tls13"
)
// maxClientPSKIdentities is the number of client PSK identities the server will
@ -41,10 +42,10 @@ type serverHandshakeStateTLS13 struct {
suite *cipherSuiteTLS13
cert *Certificate
sigAlg SignatureScheme
earlySecret []byte
earlySecret *tls13.EarlySecret
sharedKey []byte
handshakeSecret []byte
masterSecret []byte
handshakeSecret *tls13.HandshakeSecret
masterSecret *tls13.MasterSecret
trafficSecret []byte // client_application_traffic_secret_0
transcript hash.Hash
clientFinished []byte
@ -435,8 +436,8 @@ func (hs *serverHandshakeStateTLS13) checkForResumption() error {
}
}
hs.earlySecret = hs.suite.extract(sessionState.secret, nil)
binderKey := hs.suite.deriveSecret(hs.earlySecret, resumptionBinderLabel, nil)
hs.earlySecret = tls13.NewEarlySecret(hs.suite.hash.New, sessionState.secret)
binderKey := hs.earlySecret.ResumptionBinderKey()
// Clone the transcript in case a HelloRetryRequest was recorded.
transcript := cloneHash(hs.transcript, hs.suite.hash)
if transcript == nil {
@ -464,7 +465,7 @@ func (hs *serverHandshakeStateTLS13) checkForResumption() error {
if err := transcriptMsg(hs.clientHello, transcript); err != nil {
return err
}
earlyTrafficSecret := hs.suite.deriveSecret(hs.earlySecret, clientEarlyTrafficLabel, transcript)
earlyTrafficSecret := hs.earlySecret.ClientEarlyTrafficSecret(transcript)
c.quicSetReadSecret(QUICEncryptionLevelEarly, hs.suite.id, earlyTrafficSecret)
}
@ -702,16 +703,13 @@ func (hs *serverHandshakeStateTLS13) sendServerParameters() error {
earlySecret := hs.earlySecret
if earlySecret == nil {
earlySecret = hs.suite.extract(nil, nil)
earlySecret = tls13.NewEarlySecret(hs.suite.hash.New, nil)
}
hs.handshakeSecret = hs.suite.extract(hs.sharedKey,
hs.suite.deriveSecret(earlySecret, "derived", nil))
hs.handshakeSecret = earlySecret.HandshakeSecret(hs.sharedKey)
clientSecret := hs.suite.deriveSecret(hs.handshakeSecret,
clientHandshakeTrafficLabel, hs.transcript)
clientSecret := hs.handshakeSecret.ClientHandshakeTrafficSecret(hs.transcript)
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, clientSecret)
serverSecret := hs.suite.deriveSecret(hs.handshakeSecret,
serverHandshakeTrafficLabel, hs.transcript)
serverSecret := hs.handshakeSecret.ServerHandshakeTrafficSecret(hs.transcript)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, serverSecret)
if c.quic != nil {
@ -836,13 +834,10 @@ func (hs *serverHandshakeStateTLS13) sendServerFinished() error {
// Derive secrets that take context through the server Finished.
hs.masterSecret = hs.suite.extract(nil,
hs.suite.deriveSecret(hs.handshakeSecret, "derived", nil))
hs.masterSecret = hs.handshakeSecret.MasterSecret()
hs.trafficSecret = hs.suite.deriveSecret(hs.masterSecret,
clientApplicationTrafficLabel, hs.transcript)
serverSecret := hs.suite.deriveSecret(hs.masterSecret,
serverApplicationTrafficLabel, hs.transcript)
hs.trafficSecret = hs.masterSecret.ClientApplicationTrafficSecret(hs.transcript)
serverSecret := hs.masterSecret.ServerApplicationTrafficSecret(hs.transcript)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, serverSecret)
if c.quic != nil {
@ -908,8 +903,7 @@ func (hs *serverHandshakeStateTLS13) sendSessionTickets() error {
return err
}
c.resumptionSecret = hs.suite.deriveSecret(hs.masterSecret,
resumptionLabel, hs.transcript)
c.resumptionSecret = hs.masterSecret.ResumptionMasterSecret(hs.transcript)
if !hs.shouldSendSessionTickets() {
return nil
@ -924,7 +918,7 @@ func (c *Conn) sendSessionTicket(earlyData bool, extra [][]byte) error {
}
// ticket_nonce, which must be unique per connection, is always left at
// zero because we only ever send one ticket per connection.
psk := suite.expandLabel(c.resumptionSecret, "resumption",
psk := tls13.ExpandLabel(suite.hash.New, c.resumptionSecret, "resumption",
nil, suite.hash.Size())
m := new(newSessionTicketMsgTLS13)

56
hkdf/hkdf.go Normal file
View File

@ -0,0 +1,56 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hkdf
import (
"github.com/xtls/reality/fips140"
"github.com/xtls/reality/hmac"
)
func Extract[H fips140.Hash](h func() H, secret, salt []byte) []byte {
if len(secret) < 112/8 {
// fips140.RecordNonApproved()
}
if salt == nil {
salt = make([]byte, h().Size())
}
extractor := hmac.New(h, salt)
hmac.MarkAsUsedInKDF(extractor)
extractor.Write(secret)
return extractor.Sum(nil)
}
func Expand[H fips140.Hash](h func() H, pseudorandomKey []byte, info string, keyLen int) []byte {
out := make([]byte, 0, keyLen)
expander := hmac.New(h, pseudorandomKey)
hmac.MarkAsUsedInKDF(expander)
var counter uint8
var buf []byte
for len(out) < keyLen {
counter++
if counter == 0 {
panic("hkdf: counter overflow")
}
if counter > 1 {
expander.Reset()
}
expander.Write(buf)
expander.Write([]byte(info))
expander.Write([]byte{counter})
buf = expander.Sum(buf[:0])
remain := keyLen - len(out)
remain = min(remain, len(buf))
out = append(out, buf[:remain]...)
}
return out
}
func Key[H fips140.Hash](h func() H, secret, salt []byte, info string, keyLen int) []byte {
prk := Extract(h, secret, salt)
return Expand(h, prk, info, keyLen)
}

172
hmac/hmac.go Normal file
View File

@ -0,0 +1,172 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package hmac implements HMAC according to [FIPS 198-1].
//
// [FIPS 198-1]: https://doi.org/10.6028/NIST.FIPS.198-1
package hmac
import (
"github.com/xtls/reality/fips140"
"github.com/xtls/reality/sha256"
"github.com/xtls/reality/sha3"
"github.com/xtls/reality/sha512"
)
// key is zero padded to the block size of the hash function
// ipad = 0x36 byte repeated for key length
// opad = 0x5c byte repeated for key length
// hmac = H([key ^ opad] H([key ^ ipad] text))
// marshalable is the combination of encoding.BinaryMarshaler and
// encoding.BinaryUnmarshaler. Their method definitions are repeated here to
// avoid a dependency on the encoding package.
type marshalable interface {
MarshalBinary() ([]byte, error)
UnmarshalBinary([]byte) error
}
type HMAC struct {
opad, ipad []byte
outer, inner fips140.Hash
// If marshaled is true, then opad and ipad do not contain a padded
// copy of the key, but rather the marshaled state of outer/inner after
// opad/ipad has been fed into it.
marshaled bool
// forHKDF and keyLen are stored to inform the service indicator decision.
forHKDF bool
keyLen int
}
func (h *HMAC) Sum(in []byte) []byte {
// Per FIPS 140-3 IG C.M, key lengths below 112 bits are only allowed for
// legacy use (i.e. verification only) and we don't support that. However,
// HKDF uses the HMAC key for the salt, which is allowed to be shorter.
if h.keyLen < 112/8 && !h.forHKDF {
// fips140.RecordNonApproved()
}
switch h.inner.(type) {
case *sha256.Digest, *sha512.Digest, *sha3.Digest:
default:
// fips140.RecordNonApproved()
}
origLen := len(in)
in = h.inner.Sum(in)
if h.marshaled {
if err := h.outer.(marshalable).UnmarshalBinary(h.opad); err != nil {
panic(err)
}
} else {
h.outer.Reset()
h.outer.Write(h.opad)
}
h.outer.Write(in[origLen:])
return h.outer.Sum(in[:origLen])
}
func (h *HMAC) Write(p []byte) (n int, err error) {
return h.inner.Write(p)
}
func (h *HMAC) Size() int { return h.outer.Size() }
func (h *HMAC) BlockSize() int { return h.inner.BlockSize() }
func (h *HMAC) Reset() {
if h.marshaled {
if err := h.inner.(marshalable).UnmarshalBinary(h.ipad); err != nil {
panic(err)
}
return
}
h.inner.Reset()
h.inner.Write(h.ipad)
// If the underlying hash is marshalable, we can save some time by saving a
// copy of the hash state now, and restoring it on future calls to Reset and
// Sum instead of writing ipad/opad every time.
//
// We do this on Reset to avoid slowing down the common single-use case.
//
// This is allowed by FIPS 198-1, Section 6: "Conceptually, the intermediate
// results of the compression function on the B-byte blocks (K0 ⊕ ipad) and
// (K0 ⊕ opad) can be precomputed once, at the time of generation of the key
// K, or before its first use. These intermediate results can be stored and
// then used to initialize H each time that a message needs to be
// authenticated using the same key. [...] These stored intermediate values
// shall be treated and protected in the same manner as secret keys."
marshalableInner, innerOK := h.inner.(marshalable)
if !innerOK {
return
}
marshalableOuter, outerOK := h.outer.(marshalable)
if !outerOK {
return
}
imarshal, err := marshalableInner.MarshalBinary()
if err != nil {
return
}
h.outer.Reset()
h.outer.Write(h.opad)
omarshal, err := marshalableOuter.MarshalBinary()
if err != nil {
return
}
// Marshaling succeeded; save the marshaled state for later
h.ipad = imarshal
h.opad = omarshal
h.marshaled = true
}
// New returns a new HMAC hash using the given [fips140.Hash] type and key.
func New[H fips140.Hash](h func() H, key []byte) *HMAC {
hm := &HMAC{keyLen: len(key)}
hm.outer = h()
hm.inner = h()
unique := true
func() {
defer func() {
// The comparison might panic if the underlying types are not comparable.
_ = recover()
}()
if hm.outer == hm.inner {
unique = false
}
}()
if !unique {
panic("crypto/hmac: hash generation function does not produce unique values")
}
blocksize := hm.inner.BlockSize()
hm.ipad = make([]byte, blocksize)
hm.opad = make([]byte, blocksize)
if len(key) > blocksize {
// If key is too big, hash it.
hm.outer.Write(key)
key = hm.outer.Sum(nil)
}
copy(hm.ipad, key)
copy(hm.opad, key)
for i := range hm.ipad {
hm.ipad[i] ^= 0x36
}
for i := range hm.opad {
hm.opad[i] ^= 0x5c
}
hm.inner.Write(hm.ipad)
return hm
}
// MarkAsUsedInKDF records that this HMAC instance is used as part of a KDF.
func MarkAsUsedInKDF(h *HMAC) {
h.forHKDF = true
}

View File

@ -8,93 +8,28 @@ import (
"crypto/ecdh"
"crypto/hmac"
"errors"
"fmt"
"hash"
"io"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/hkdf"
"golang.org/x/crypto/sha3"
"github.com/xtls/reality/mlkem768"
"github.com/xtls/reality/tls13"
)
// This file contains the functions necessary to compute the TLS 1.3 key
// schedule. See RFC 8446, Section 7.
const (
resumptionBinderLabel = "res binder"
clientEarlyTrafficLabel = "c e traffic"
clientHandshakeTrafficLabel = "c hs traffic"
serverHandshakeTrafficLabel = "s hs traffic"
clientApplicationTrafficLabel = "c ap traffic"
serverApplicationTrafficLabel = "s ap traffic"
exporterLabel = "exp master"
resumptionLabel = "res master"
trafficUpdateLabel = "traffic upd"
)
// expandLabel implements HKDF-Expand-Label from RFC 8446, Section 7.1.
func (c *cipherSuiteTLS13) expandLabel(secret []byte, label string, context []byte, length int) []byte {
var hkdfLabel cryptobyte.Builder
hkdfLabel.AddUint16(uint16(length))
hkdfLabel.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes([]byte("tls13 "))
b.AddBytes([]byte(label))
})
hkdfLabel.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(context)
})
hkdfLabelBytes, err := hkdfLabel.Bytes()
if err != nil {
// Rather than calling BytesOrPanic, we explicitly handle this error, in
// order to provide a reasonable error message. It should be basically
// impossible for this to panic, and routing errors back through the
// tree rooted in this function is quite painful. The labels are fixed
// size, and the context is either a fixed-length computed hash, or
// parsed from a field which has the same length limitation. As such, an
// error here is likely to only be caused during development.
//
// NOTE: another reasonable approach here might be to return a
// randomized slice if we encounter an error, which would break the
// connection, but avoid panicking. This would perhaps be safer but
// significantly more confusing to users.
panic(fmt.Errorf("failed to construct HKDF label: %s", err))
}
out := make([]byte, length)
n, err := hkdf.Expand(c.hash.New, secret, hkdfLabelBytes).Read(out)
if err != nil || n != length {
panic("tls: HKDF-Expand-Label invocation failed unexpectedly")
}
return out
}
// deriveSecret implements Derive-Secret from RFC 8446, Section 7.1.
func (c *cipherSuiteTLS13) deriveSecret(secret []byte, label string, transcript hash.Hash) []byte {
if transcript == nil {
transcript = c.hash.New()
}
return c.expandLabel(secret, label, transcript.Sum(nil), c.hash.Size())
}
// extract implements HKDF-Extract with the cipher suite hash.
func (c *cipherSuiteTLS13) extract(newSecret, currentSecret []byte) []byte {
if newSecret == nil {
newSecret = make([]byte, c.hash.Size())
}
return hkdf.Extract(c.hash.New, newSecret, currentSecret)
}
// nextTrafficSecret generates the next traffic secret, given the current one,
// according to RFC 8446, Section 7.2.
func (c *cipherSuiteTLS13) nextTrafficSecret(trafficSecret []byte) []byte {
return c.expandLabel(trafficSecret, trafficUpdateLabel, nil, c.hash.Size())
return tls13.ExpandLabel(c.hash.New, trafficSecret, "traffic upd", nil, c.hash.Size())
}
// trafficKey generates traffic keys according to RFC 8446, Section 7.3.
func (c *cipherSuiteTLS13) trafficKey(trafficSecret []byte) (key, iv []byte) {
key = c.expandLabel(trafficSecret, "key", nil, c.keyLen)
iv = c.expandLabel(trafficSecret, "iv", nil, aeadNonceLength)
key = tls13.ExpandLabel(c.hash.New, trafficSecret, "key", nil, c.keyLen)
iv = tls13.ExpandLabel(c.hash.New, trafficSecret, "iv", nil, aeadNonceLength)
return
}
@ -102,7 +37,7 @@ func (c *cipherSuiteTLS13) trafficKey(trafficSecret []byte) (key, iv []byte) {
// to RFC 8446, Section 4.4.4. See sections 4.4 and 4.2.11.2 for the baseKey
// selection.
func (c *cipherSuiteTLS13) finishedHash(baseKey []byte, transcript hash.Hash) []byte {
finishedKey := c.expandLabel(baseKey, "finished", nil, c.hash.Size())
finishedKey := tls13.ExpandLabel(c.hash.New, baseKey, "finished", nil, c.hash.Size())
verifyData := hmac.New(c.hash.New, finishedKey)
verifyData.Write(transcript.Sum(nil))
return verifyData.Sum(nil)
@ -110,13 +45,10 @@ func (c *cipherSuiteTLS13) finishedHash(baseKey []byte, transcript hash.Hash) []
// exportKeyingMaterial implements RFC5705 exporters for TLS 1.3 according to
// RFC 8446, Section 7.5.
func (c *cipherSuiteTLS13) exportKeyingMaterial(masterSecret []byte, transcript hash.Hash) func(string, []byte, int) ([]byte, error) {
expMasterSecret := c.deriveSecret(masterSecret, exporterLabel, transcript)
func (c *cipherSuiteTLS13) exportKeyingMaterial(s *tls13.MasterSecret, transcript hash.Hash) func(string, []byte, int) ([]byte, error) {
expMasterSecret := s.ExporterMasterSecret(transcript)
return func(label string, context []byte, length int) ([]byte, error) {
secret := c.deriveSecret(expMasterSecret, label, nil)
h := c.hash.New()
h.Write(context)
return c.expandLabel(secret, "exporter", h.Sum(nil), length), nil
return expMasterSecret.Exporter(label, context, length), nil
}
}

231
sha256/sha256.go Normal file
View File

@ -0,0 +1,231 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha256 implements the SHA-224 and SHA-256 hash algorithms as defined
// in FIPS 180-4.
package sha256
import (
//"github.com/xtls/reality"
"github.com/xtls/reality/byteorder"
"errors"
)
// The size of a SHA-256 checksum in bytes.
const size = 32
// The size of a SHA-224 checksum in bytes.
const size224 = 28
// The block size of SHA-256 and SHA-224 in bytes.
const blockSize = 64
const (
chunk = 64
init0 = 0x6A09E667
init1 = 0xBB67AE85
init2 = 0x3C6EF372
init3 = 0xA54FF53A
init4 = 0x510E527F
init5 = 0x9B05688C
init6 = 0x1F83D9AB
init7 = 0x5BE0CD19
init0_224 = 0xC1059ED8
init1_224 = 0x367CD507
init2_224 = 0x3070DD17
init3_224 = 0xF70E5939
init4_224 = 0xFFC00B31
init5_224 = 0x68581511
init6_224 = 0x64F98FA7
init7_224 = 0xBEFA4FA4
)
// Digest is a SHA-224 or SHA-256 [hash.Hash] implementation.
type Digest struct {
h [8]uint32
x [chunk]byte
nx int
len uint64
is224 bool // mark if this digest is SHA-224
}
const (
magic224 = "sha\x02"
magic256 = "sha\x03"
marshaledSize = len(magic256) + 8*4 + chunk + 8
)
func (d *Digest) MarshalBinary() ([]byte, error) {
return d.AppendBinary(make([]byte, 0, marshaledSize))
}
func (d *Digest) AppendBinary(b []byte) ([]byte, error) {
if d.is224 {
b = append(b, magic224...)
} else {
b = append(b, magic256...)
}
b = byteorder.BEAppendUint32(b, d.h[0])
b = byteorder.BEAppendUint32(b, d.h[1])
b = byteorder.BEAppendUint32(b, d.h[2])
b = byteorder.BEAppendUint32(b, d.h[3])
b = byteorder.BEAppendUint32(b, d.h[4])
b = byteorder.BEAppendUint32(b, d.h[5])
b = byteorder.BEAppendUint32(b, d.h[6])
b = byteorder.BEAppendUint32(b, d.h[7])
b = append(b, d.x[:d.nx]...)
b = append(b, make([]byte, len(d.x)-d.nx)...)
b = byteorder.BEAppendUint64(b, d.len)
return b, nil
}
func (d *Digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic224) || (d.is224 && string(b[:len(magic224)]) != magic224) || (!d.is224 && string(b[:len(magic256)]) != magic256) {
return errors.New("crypto/sha256: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("crypto/sha256: invalid hash state size")
}
b = b[len(magic224):]
b, d.h[0] = consumeUint32(b)
b, d.h[1] = consumeUint32(b)
b, d.h[2] = consumeUint32(b)
b, d.h[3] = consumeUint32(b)
b, d.h[4] = consumeUint32(b)
b, d.h[5] = consumeUint32(b)
b, d.h[6] = consumeUint32(b)
b, d.h[7] = consumeUint32(b)
b = b[copy(d.x[:], b):]
b, d.len = consumeUint64(b)
d.nx = int(d.len % chunk)
return nil
}
func consumeUint64(b []byte) ([]byte, uint64) {
return b[8:], byteorder.BEUint64(b)
}
func consumeUint32(b []byte) ([]byte, uint32) {
return b[4:], byteorder.BEUint32(b)
}
func (d *Digest) Reset() {
if !d.is224 {
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
} else {
d.h[0] = init0_224
d.h[1] = init1_224
d.h[2] = init2_224
d.h[3] = init3_224
d.h[4] = init4_224
d.h[5] = init5_224
d.h[6] = init6_224
d.h[7] = init7_224
}
d.nx = 0
d.len = 0
}
// New returns a new Digest computing the SHA-256 hash.
func New() *Digest {
d := new(Digest)
d.Reset()
return d
}
// New224 returns a new Digest computing the SHA-224 hash.
func New224() *Digest {
d := new(Digest)
d.is224 = true
d.Reset()
return d
}
func (d *Digest) Size() int {
if !d.is224 {
return size
}
return size224
}
func (d *Digest) BlockSize() int { return blockSize }
func (d *Digest) Write(p []byte) (nn int, err error) {
nn = len(p)
d.len += uint64(nn)
if d.nx > 0 {
n := copy(d.x[d.nx:], p)
d.nx += n
if d.nx == chunk {
block(d, d.x[:])
d.nx = 0
}
p = p[n:]
}
if len(p) >= chunk {
n := len(p) &^ (chunk - 1)
block(d, p[:n])
p = p[n:]
}
if len(p) > 0 {
d.nx = copy(d.x[:], p)
}
return
}
func (d *Digest) Sum(in []byte) []byte {
//fips140.RecordApproved()
// Make a copy of d so that caller can keep writing and summing.
d0 := *d
hash := d0.checkSum()
if d0.is224 {
return append(in, hash[:size224]...)
}
return append(in, hash[:]...)
}
func (d *Digest) checkSum() [size]byte {
len := d.len
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
var tmp [64 + 8]byte // padding + length buffer
tmp[0] = 0x80
var t uint64
if len%64 < 56 {
t = 56 - len%64
} else {
t = 64 + 56 - len%64
}
// Length in bits.
len <<= 3
padlen := tmp[:t+8]
byteorder.BEPutUint64(padlen[t+0:], len)
d.Write(padlen)
if d.nx != 0 {
panic("d.nx != 0")
}
var digest [size]byte
byteorder.BEPutUint32(digest[0:], d.h[0])
byteorder.BEPutUint32(digest[4:], d.h[1])
byteorder.BEPutUint32(digest[8:], d.h[2])
byteorder.BEPutUint32(digest[12:], d.h[3])
byteorder.BEPutUint32(digest[16:], d.h[4])
byteorder.BEPutUint32(digest[20:], d.h[5])
byteorder.BEPutUint32(digest[24:], d.h[6])
if !d.is224 {
byteorder.BEPutUint32(digest[28:], d.h[7])
}
return digest
}

128
sha256/sha256block.go Normal file
View File

@ -0,0 +1,128 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// SHA256 block step.
// In its own file so that a faster assembly or C version
// can be substituted easily.
package sha256
import "math/bits"
var _K = [...]uint32{
0x428a2f98,
0x71374491,
0xb5c0fbcf,
0xe9b5dba5,
0x3956c25b,
0x59f111f1,
0x923f82a4,
0xab1c5ed5,
0xd807aa98,
0x12835b01,
0x243185be,
0x550c7dc3,
0x72be5d74,
0x80deb1fe,
0x9bdc06a7,
0xc19bf174,
0xe49b69c1,
0xefbe4786,
0x0fc19dc6,
0x240ca1cc,
0x2de92c6f,
0x4a7484aa,
0x5cb0a9dc,
0x76f988da,
0x983e5152,
0xa831c66d,
0xb00327c8,
0xbf597fc7,
0xc6e00bf3,
0xd5a79147,
0x06ca6351,
0x14292967,
0x27b70a85,
0x2e1b2138,
0x4d2c6dfc,
0x53380d13,
0x650a7354,
0x766a0abb,
0x81c2c92e,
0x92722c85,
0xa2bfe8a1,
0xa81a664b,
0xc24b8b70,
0xc76c51a3,
0xd192e819,
0xd6990624,
0xf40e3585,
0x106aa070,
0x19a4c116,
0x1e376c08,
0x2748774c,
0x34b0bcb5,
0x391c0cb3,
0x4ed8aa4a,
0x5b9cca4f,
0x682e6ff3,
0x748f82ee,
0x78a5636f,
0x84c87814,
0x8cc70208,
0x90befffa,
0xa4506ceb,
0xbef9a3f7,
0xc67178f2,
}
func blockGeneric(dig *Digest, p []byte) {
var w [64]uint32
h0, h1, h2, h3, h4, h5, h6, h7 := dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]
for len(p) >= chunk {
// Can interlace the computation of w with the
// rounds below if needed for speed.
for i := 0; i < 16; i++ {
j := i * 4
w[i] = uint32(p[j])<<24 | uint32(p[j+1])<<16 | uint32(p[j+2])<<8 | uint32(p[j+3])
}
for i := 16; i < 64; i++ {
v1 := w[i-2]
t1 := (bits.RotateLeft32(v1, -17)) ^ (bits.RotateLeft32(v1, -19)) ^ (v1 >> 10)
v2 := w[i-15]
t2 := (bits.RotateLeft32(v2, -7)) ^ (bits.RotateLeft32(v2, -18)) ^ (v2 >> 3)
w[i] = t1 + w[i-7] + t2 + w[i-16]
}
a, b, c, d, e, f, g, h := h0, h1, h2, h3, h4, h5, h6, h7
for i := 0; i < 64; i++ {
t1 := h + ((bits.RotateLeft32(e, -6)) ^ (bits.RotateLeft32(e, -11)) ^ (bits.RotateLeft32(e, -25))) + ((e & f) ^ (^e & g)) + _K[i] + w[i]
t2 := ((bits.RotateLeft32(a, -2)) ^ (bits.RotateLeft32(a, -13)) ^ (bits.RotateLeft32(a, -22))) + ((a & b) ^ (a & c) ^ (b & c))
h = g
g = f
f = e
e = d + t1
d = c
c = b
b = a
a = t1 + t2
}
h0 += a
h1 += b
h2 += c
h3 += d
h4 += e
h5 += f
h6 += g
h7 += h
p = p[chunk:]
}
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7] = h0, h1, h2, h3, h4, h5, h6, h7
}

View File

@ -0,0 +1,9 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha256
func block(dig *Digest, p []byte) {
blockGeneric(dig, p)
}

59
sha3/hashes.go Normal file
View File

@ -0,0 +1,59 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// New224 returns a new Digest computing the SHA3-224 hash.
func New224() *Digest {
return &Digest{rate: rateK448, outputLen: 28, dsbyte: dsbyteSHA3}
}
// New256 returns a new Digest computing the SHA3-256 hash.
func New256() *Digest {
return &Digest{rate: rateK512, outputLen: 32, dsbyte: dsbyteSHA3}
}
// New384 returns a new Digest computing the SHA3-384 hash.
func New384() *Digest {
return &Digest{rate: rateK768, outputLen: 48, dsbyte: dsbyteSHA3}
}
// New512 returns a new Digest computing the SHA3-512 hash.
func New512() *Digest {
return &Digest{rate: rateK1024, outputLen: 64, dsbyte: dsbyteSHA3}
}
// TODO(fips): do this in the stdlib crypto/sha3 package.
//
// crypto.RegisterHash(crypto.SHA3_224, New224)
// crypto.RegisterHash(crypto.SHA3_256, New256)
// crypto.RegisterHash(crypto.SHA3_384, New384)
// crypto.RegisterHash(crypto.SHA3_512, New512)
const (
dsbyteSHA3 = 0b00000110
dsbyteKeccak = 0b00000001
dsbyteShake = 0b00011111
dsbyteCShake = 0b00000100
// rateK[c] is the rate in bytes for Keccak[c] where c is the capacity in
// bits. Given the sponge size is 1600 bits, the rate is 1600 - c bits.
rateK256 = (1600 - 256) / 8
rateK448 = (1600 - 448) / 8
rateK512 = (1600 - 512) / 8
rateK768 = (1600 - 768) / 8
rateK1024 = (1600 - 1024) / 8
)
// NewLegacyKeccak256 returns a new Digest computing the legacy, non-standard
// Keccak-256 hash.
func NewLegacyKeccak256() *Digest {
return &Digest{rate: rateK512, outputLen: 32, dsbyte: dsbyteKeccak}
}
// NewLegacyKeccak512 returns a new Digest computing the legacy, non-standard
// Keccak-512 hash.
func NewLegacyKeccak512() *Digest {
return &Digest{rate: rateK1024, outputLen: 64, dsbyte: dsbyteKeccak}
}

434
sha3/keccakf.go Normal file
View File

@ -0,0 +1,434 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
import (
"encoding/binary"
"github.com/xtls/reality/byteorder"
//"crypto/internal/fips140deps/cpu"
"math/bits"
"unsafe"
)
// rc stores the round constants for use in the ι step.
var rc = [24]uint64{
0x0000000000000001,
0x0000000000008082,
0x800000000000808A,
0x8000000080008000,
0x000000000000808B,
0x0000000080000001,
0x8000000080008081,
0x8000000000008009,
0x000000000000008A,
0x0000000000000088,
0x0000000080008009,
0x000000008000000A,
0x000000008000808B,
0x800000000000008B,
0x8000000000008089,
0x8000000000008003,
0x8000000000008002,
0x8000000000000080,
0x000000000000800A,
0x800000008000000A,
0x8000000080008081,
0x8000000000008080,
0x0000000080000001,
0x8000000080008008,
}
// keccakF1600Generic applies the Keccak permutation.
func keccakF1600Generic(da *[200]byte) {
var a *[25]uint64
//if cpu.BigEndian {
if binary.NativeEndian.Uint16([]byte{0x12, 0x34}) != uint16(0x3412) {
a = new([25]uint64)
for i := range a {
a[i] = byteorder.LEUint64(da[i*8:])
}
defer func() {
for i := range a {
byteorder.LEPutUint64(da[i*8:], a[i])
}
}()
} else {
a = (*[25]uint64)(unsafe.Pointer(da))
}
// Implementation translated from Keccak-inplace.c
// in the keccak reference code.
var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64
for i := 0; i < 24; i += 4 {
// Combines the 5 steps in each round into 2 steps.
// Unrolls 4 rounds per loop and spreads some steps across rounds.
// Round 1
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[6] ^ d1
bc1 = bits.RotateLeft64(t, 44)
t = a[12] ^ d2
bc2 = bits.RotateLeft64(t, 43)
t = a[18] ^ d3
bc3 = bits.RotateLeft64(t, 21)
t = a[24] ^ d4
bc4 = bits.RotateLeft64(t, 14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i]
a[6] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc2 = bits.RotateLeft64(t, 3)
t = a[16] ^ d1
bc3 = bits.RotateLeft64(t, 45)
t = a[22] ^ d2
bc4 = bits.RotateLeft64(t, 61)
t = a[3] ^ d3
bc0 = bits.RotateLeft64(t, 28)
t = a[9] ^ d4
bc1 = bits.RotateLeft64(t, 20)
a[10] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc4 = bits.RotateLeft64(t, 18)
t = a[1] ^ d1
bc0 = bits.RotateLeft64(t, 1)
t = a[7] ^ d2
bc1 = bits.RotateLeft64(t, 6)
t = a[13] ^ d3
bc2 = bits.RotateLeft64(t, 25)
t = a[19] ^ d4
bc3 = bits.RotateLeft64(t, 8)
a[20] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc1 = bits.RotateLeft64(t, 36)
t = a[11] ^ d1
bc2 = bits.RotateLeft64(t, 10)
t = a[17] ^ d2
bc3 = bits.RotateLeft64(t, 15)
t = a[23] ^ d3
bc4 = bits.RotateLeft64(t, 56)
t = a[4] ^ d4
bc0 = bits.RotateLeft64(t, 27)
a[5] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc3 = bits.RotateLeft64(t, 41)
t = a[21] ^ d1
bc4 = bits.RotateLeft64(t, 2)
t = a[2] ^ d2
bc0 = bits.RotateLeft64(t, 62)
t = a[8] ^ d3
bc1 = bits.RotateLeft64(t, 55)
t = a[14] ^ d4
bc2 = bits.RotateLeft64(t, 39)
a[15] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
// Round 2
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[16] ^ d1
bc1 = bits.RotateLeft64(t, 44)
t = a[7] ^ d2
bc2 = bits.RotateLeft64(t, 43)
t = a[23] ^ d3
bc3 = bits.RotateLeft64(t, 21)
t = a[14] ^ d4
bc4 = bits.RotateLeft64(t, 14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1]
a[16] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc2 = bits.RotateLeft64(t, 3)
t = a[11] ^ d1
bc3 = bits.RotateLeft64(t, 45)
t = a[2] ^ d2
bc4 = bits.RotateLeft64(t, 61)
t = a[18] ^ d3
bc0 = bits.RotateLeft64(t, 28)
t = a[9] ^ d4
bc1 = bits.RotateLeft64(t, 20)
a[20] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc4 = bits.RotateLeft64(t, 18)
t = a[6] ^ d1
bc0 = bits.RotateLeft64(t, 1)
t = a[22] ^ d2
bc1 = bits.RotateLeft64(t, 6)
t = a[13] ^ d3
bc2 = bits.RotateLeft64(t, 25)
t = a[4] ^ d4
bc3 = bits.RotateLeft64(t, 8)
a[15] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc1 = bits.RotateLeft64(t, 36)
t = a[1] ^ d1
bc2 = bits.RotateLeft64(t, 10)
t = a[17] ^ d2
bc3 = bits.RotateLeft64(t, 15)
t = a[8] ^ d3
bc4 = bits.RotateLeft64(t, 56)
t = a[24] ^ d4
bc0 = bits.RotateLeft64(t, 27)
a[10] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc3 = bits.RotateLeft64(t, 41)
t = a[21] ^ d1
bc4 = bits.RotateLeft64(t, 2)
t = a[12] ^ d2
bc0 = bits.RotateLeft64(t, 62)
t = a[3] ^ d3
bc1 = bits.RotateLeft64(t, 55)
t = a[19] ^ d4
bc2 = bits.RotateLeft64(t, 39)
a[5] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
// Round 3
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[11] ^ d1
bc1 = bits.RotateLeft64(t, 44)
t = a[22] ^ d2
bc2 = bits.RotateLeft64(t, 43)
t = a[8] ^ d3
bc3 = bits.RotateLeft64(t, 21)
t = a[19] ^ d4
bc4 = bits.RotateLeft64(t, 14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2]
a[11] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc2 = bits.RotateLeft64(t, 3)
t = a[1] ^ d1
bc3 = bits.RotateLeft64(t, 45)
t = a[12] ^ d2
bc4 = bits.RotateLeft64(t, 61)
t = a[23] ^ d3
bc0 = bits.RotateLeft64(t, 28)
t = a[9] ^ d4
bc1 = bits.RotateLeft64(t, 20)
a[15] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc4 = bits.RotateLeft64(t, 18)
t = a[16] ^ d1
bc0 = bits.RotateLeft64(t, 1)
t = a[2] ^ d2
bc1 = bits.RotateLeft64(t, 6)
t = a[13] ^ d3
bc2 = bits.RotateLeft64(t, 25)
t = a[24] ^ d4
bc3 = bits.RotateLeft64(t, 8)
a[5] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc1 = bits.RotateLeft64(t, 36)
t = a[6] ^ d1
bc2 = bits.RotateLeft64(t, 10)
t = a[17] ^ d2
bc3 = bits.RotateLeft64(t, 15)
t = a[3] ^ d3
bc4 = bits.RotateLeft64(t, 56)
t = a[14] ^ d4
bc0 = bits.RotateLeft64(t, 27)
a[20] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc3 = bits.RotateLeft64(t, 41)
t = a[21] ^ d1
bc4 = bits.RotateLeft64(t, 2)
t = a[7] ^ d2
bc0 = bits.RotateLeft64(t, 62)
t = a[18] ^ d3
bc1 = bits.RotateLeft64(t, 55)
t = a[4] ^ d4
bc2 = bits.RotateLeft64(t, 39)
a[10] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
// Round 4
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[1] ^ d1
bc1 = bits.RotateLeft64(t, 44)
t = a[2] ^ d2
bc2 = bits.RotateLeft64(t, 43)
t = a[3] ^ d3
bc3 = bits.RotateLeft64(t, 21)
t = a[4] ^ d4
bc4 = bits.RotateLeft64(t, 14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3]
a[1] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc2 = bits.RotateLeft64(t, 3)
t = a[6] ^ d1
bc3 = bits.RotateLeft64(t, 45)
t = a[7] ^ d2
bc4 = bits.RotateLeft64(t, 61)
t = a[8] ^ d3
bc0 = bits.RotateLeft64(t, 28)
t = a[9] ^ d4
bc1 = bits.RotateLeft64(t, 20)
a[5] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc4 = bits.RotateLeft64(t, 18)
t = a[11] ^ d1
bc0 = bits.RotateLeft64(t, 1)
t = a[12] ^ d2
bc1 = bits.RotateLeft64(t, 6)
t = a[13] ^ d3
bc2 = bits.RotateLeft64(t, 25)
t = a[14] ^ d4
bc3 = bits.RotateLeft64(t, 8)
a[10] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc1 = bits.RotateLeft64(t, 36)
t = a[16] ^ d1
bc2 = bits.RotateLeft64(t, 10)
t = a[17] ^ d2
bc3 = bits.RotateLeft64(t, 15)
t = a[18] ^ d3
bc4 = bits.RotateLeft64(t, 56)
t = a[19] ^ d4
bc0 = bits.RotateLeft64(t, 27)
a[15] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc3 = bits.RotateLeft64(t, 41)
t = a[21] ^ d1
bc4 = bits.RotateLeft64(t, 2)
t = a[22] ^ d2
bc0 = bits.RotateLeft64(t, 62)
t = a[23] ^ d3
bc1 = bits.RotateLeft64(t, 55)
t = a[24] ^ d4
bc2 = bits.RotateLeft64(t, 39)
a[20] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
}
}

235
sha3/sha3.go Normal file
View File

@ -0,0 +1,235 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha3 implements the SHA-3 fixed-output-length hash functions and
// the SHAKE variable-output-length functions defined by [FIPS 202], as well as
// the cSHAKE extendable-output-length functions defined by [SP 800-185].
//
// [FIPS 202]: https://doi.org/10.6028/NIST.FIPS.202
// [SP 800-185]: https://doi.org/10.6028/NIST.SP.800-185
package sha3
import (
// "github.com/xtls/reality/fips140"
"github.com/xtls/reality/subtle"
"errors"
)
// spongeDirection indicates the direction bytes are flowing through the sponge.
type spongeDirection int
const (
// spongeAbsorbing indicates that the sponge is absorbing input.
spongeAbsorbing spongeDirection = iota
// spongeSqueezing indicates that the sponge is being squeezed.
spongeSqueezing
)
type Digest struct {
a [1600 / 8]byte // main state of the hash
// a[n:rate] is the buffer. If absorbing, it's the remaining space to XOR
// into before running the permutation. If squeezing, it's the remaining
// output to produce before running the permutation.
n, rate int
// dsbyte contains the "domain separation" bits and the first bit of
// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
// SHA-3 and SHAKE functions by appending bitstrings to the message.
// Using a little-endian bit-ordering convention, these are "01" for SHA-3
// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
// padding rule from section 5.1 is applied to pad the message to a multiple
// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
// giving 00000110b (0x06) and 00011111b (0x1f).
// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
// "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
// Extendable-Output Functions (May 2014)"
dsbyte byte
outputLen int // the default output size in bytes
state spongeDirection // whether the sponge is absorbing or squeezing
}
// BlockSize returns the rate of sponge underlying this hash function.
func (d *Digest) BlockSize() int { return d.rate }
// Size returns the output size of the hash function in bytes.
func (d *Digest) Size() int { return d.outputLen }
// Reset resets the Digest to its initial state.
func (d *Digest) Reset() {
// Zero the permutation's state.
for i := range d.a {
d.a[i] = 0
}
d.state = spongeAbsorbing
d.n = 0
}
func (d *Digest) Clone() *Digest {
ret := *d
return &ret
}
// permute applies the KeccakF-1600 permutation.
func (d *Digest) permute() {
keccakF1600(&d.a)
d.n = 0
}
// padAndPermute appends the domain separation bits in dsbyte, applies
// the multi-bitrate 10..1 padding rule, and permutes the state.
func (d *Digest) padAndPermute() {
// Pad with this instance's domain-separator bits. We know that there's
// at least one byte of space in the sponge because, if it were full,
// permute would have been called to empty it. dsbyte also contains the
// first one bit for the padding. See the comment in the state struct.
d.a[d.n] ^= d.dsbyte
// This adds the final one bit for the padding. Because of the way that
// bits are numbered from the LSB upwards, the final bit is the MSB of
// the last byte.
d.a[d.rate-1] ^= 0x80
// Apply the permutation
d.permute()
d.state = spongeSqueezing
}
// Write absorbs more data into the hash's state.
func (d *Digest) Write(p []byte) (n int, err error) { return d.write(p) }
func (d *Digest) writeGeneric(p []byte) (n int, err error) {
if d.state != spongeAbsorbing {
panic("sha3: Write after Read")
}
n = len(p)
for len(p) > 0 {
x := subtle.XORBytes(d.a[d.n:d.rate], d.a[d.n:d.rate], p)
d.n += x
p = p[x:]
// If the sponge is full, apply the permutation.
if d.n == d.rate {
d.permute()
}
}
return
}
// read squeezes an arbitrary number of bytes from the sponge.
func (d *Digest) readGeneric(out []byte) (n int, err error) {
// If we're still absorbing, pad and apply the permutation.
if d.state == spongeAbsorbing {
d.padAndPermute()
}
n = len(out)
// Now, do the squeezing.
for len(out) > 0 {
// Apply the permutation if we've squeezed the sponge dry.
if d.n == d.rate {
d.permute()
}
x := copy(out, d.a[d.n:d.rate])
d.n += x
out = out[x:]
}
return
}
// Sum appends the current hash to b and returns the resulting slice.
// It does not change the underlying hash state.
func (d *Digest) Sum(b []byte) []byte {
// fips140.RecordApproved()
return d.sum(b)
}
func (d *Digest) sumGeneric(b []byte) []byte {
if d.state != spongeAbsorbing {
panic("sha3: Sum after Read")
}
// Make a copy of the original hash so that caller can keep writing
// and summing.
dup := d.Clone()
hash := make([]byte, dup.outputLen, 64) // explicit cap to allow stack allocation
dup.read(hash)
return append(b, hash...)
}
const (
magicSHA3 = "sha\x08"
magicShake = "sha\x09"
magicCShake = "sha\x0a"
magicKeccak = "sha\x0b"
// magic || rate || main state || n || sponge direction
marshaledSize = len(magicSHA3) + 1 + 200 + 1 + 1
)
func (d *Digest) MarshalBinary() ([]byte, error) {
return d.AppendBinary(make([]byte, 0, marshaledSize))
}
func (d *Digest) AppendBinary(b []byte) ([]byte, error) {
switch d.dsbyte {
case dsbyteSHA3:
b = append(b, magicSHA3...)
case dsbyteShake:
b = append(b, magicShake...)
case dsbyteCShake:
b = append(b, magicCShake...)
case dsbyteKeccak:
b = append(b, magicKeccak...)
default:
panic("unknown dsbyte")
}
// rate is at most 168, and n is at most rate.
b = append(b, byte(d.rate))
b = append(b, d.a[:]...)
b = append(b, byte(d.n), byte(d.state))
return b, nil
}
func (d *Digest) UnmarshalBinary(b []byte) error {
if len(b) != marshaledSize {
return errors.New("sha3: invalid hash state")
}
magic := string(b[:len(magicSHA3)])
b = b[len(magicSHA3):]
switch {
case magic == magicSHA3 && d.dsbyte == dsbyteSHA3:
case magic == magicShake && d.dsbyte == dsbyteShake:
case magic == magicCShake && d.dsbyte == dsbyteCShake:
case magic == magicKeccak && d.dsbyte == dsbyteKeccak:
default:
return errors.New("sha3: invalid hash state identifier")
}
rate := int(b[0])
b = b[1:]
if rate != d.rate {
return errors.New("sha3: invalid hash state function")
}
copy(d.a[:], b)
b = b[len(d.a):]
n, state := int(b[0]), spongeDirection(b[1])
if n > d.rate {
return errors.New("sha3: invalid hash state")
}
d.n = n
if state != spongeAbsorbing && state != spongeSqueezing {
return errors.New("sha3: invalid hash state")
}
d.state = state
return nil
}

19
sha3/sha3_noasm.go Normal file
View File

@ -0,0 +1,19 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
func keccakF1600(a *[200]byte) {
keccakF1600Generic(a)
}
func (d *Digest) write(p []byte) (n int, err error) {
return d.writeGeneric(p)
}
func (d *Digest) read(out []byte) (n int, err error) {
return d.readGeneric(out)
}
func (d *Digest) sum(b []byte) []byte {
return d.sumGeneric(b)
}

301
sha512/sha512.go Normal file
View File

@ -0,0 +1,301 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha512 implements the SHA-384, SHA-512, SHA-512/224, and SHA-512/256
// hash algorithms as defined in FIPS 180-4.
package sha512
import (
// "github.com/xtls/reality/fips140"
"github.com/xtls/reality/byteorder"
"errors"
)
const (
// size512 is the size, in bytes, of a SHA-512 checksum.
size512 = 64
// size224 is the size, in bytes, of a SHA-512/224 checksum.
size224 = 28
// size256 is the size, in bytes, of a SHA-512/256 checksum.
size256 = 32
// size384 is the size, in bytes, of a SHA-384 checksum.
size384 = 48
// blockSize is the block size, in bytes, of the SHA-512/224,
// SHA-512/256, SHA-384 and SHA-512 hash functions.
blockSize = 128
)
const (
chunk = 128
init0 = 0x6a09e667f3bcc908
init1 = 0xbb67ae8584caa73b
init2 = 0x3c6ef372fe94f82b
init3 = 0xa54ff53a5f1d36f1
init4 = 0x510e527fade682d1
init5 = 0x9b05688c2b3e6c1f
init6 = 0x1f83d9abfb41bd6b
init7 = 0x5be0cd19137e2179
init0_224 = 0x8c3d37c819544da2
init1_224 = 0x73e1996689dcd4d6
init2_224 = 0x1dfab7ae32ff9c82
init3_224 = 0x679dd514582f9fcf
init4_224 = 0x0f6d2b697bd44da8
init5_224 = 0x77e36f7304c48942
init6_224 = 0x3f9d85a86a1d36c8
init7_224 = 0x1112e6ad91d692a1
init0_256 = 0x22312194fc2bf72c
init1_256 = 0x9f555fa3c84c64c2
init2_256 = 0x2393b86b6f53b151
init3_256 = 0x963877195940eabd
init4_256 = 0x96283ee2a88effe3
init5_256 = 0xbe5e1e2553863992
init6_256 = 0x2b0199fc2c85b8aa
init7_256 = 0x0eb72ddc81c52ca2
init0_384 = 0xcbbb9d5dc1059ed8
init1_384 = 0x629a292a367cd507
init2_384 = 0x9159015a3070dd17
init3_384 = 0x152fecd8f70e5939
init4_384 = 0x67332667ffc00b31
init5_384 = 0x8eb44a8768581511
init6_384 = 0xdb0c2e0d64f98fa7
init7_384 = 0x47b5481dbefa4fa4
)
// Digest is a SHA-384, SHA-512, SHA-512/224, or SHA-512/256 [hash.Hash]
// implementation.
type Digest struct {
h [8]uint64
x [chunk]byte
nx int
len uint64
size int // size224, size256, size384, or size512
}
func (d *Digest) Reset() {
switch d.size {
case size384:
d.h[0] = init0_384
d.h[1] = init1_384
d.h[2] = init2_384
d.h[3] = init3_384
d.h[4] = init4_384
d.h[5] = init5_384
d.h[6] = init6_384
d.h[7] = init7_384
case size224:
d.h[0] = init0_224
d.h[1] = init1_224
d.h[2] = init2_224
d.h[3] = init3_224
d.h[4] = init4_224
d.h[5] = init5_224
d.h[6] = init6_224
d.h[7] = init7_224
case size256:
d.h[0] = init0_256
d.h[1] = init1_256
d.h[2] = init2_256
d.h[3] = init3_256
d.h[4] = init4_256
d.h[5] = init5_256
d.h[6] = init6_256
d.h[7] = init7_256
case size512:
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
default:
panic("unknown size")
}
d.nx = 0
d.len = 0
}
const (
magic384 = "sha\x04"
magic512_224 = "sha\x05"
magic512_256 = "sha\x06"
magic512 = "sha\x07"
marshaledSize = len(magic512) + 8*8 + chunk + 8
)
func (d *Digest) MarshalBinary() ([]byte, error) {
return d.AppendBinary(make([]byte, 0, marshaledSize))
}
func (d *Digest) AppendBinary(b []byte) ([]byte, error) {
switch d.size {
case size384:
b = append(b, magic384...)
case size224:
b = append(b, magic512_224...)
case size256:
b = append(b, magic512_256...)
case size512:
b = append(b, magic512...)
default:
panic("unknown size")
}
b = byteorder.BEAppendUint64(b, d.h[0])
b = byteorder.BEAppendUint64(b, d.h[1])
b = byteorder.BEAppendUint64(b, d.h[2])
b = byteorder.BEAppendUint64(b, d.h[3])
b = byteorder.BEAppendUint64(b, d.h[4])
b = byteorder.BEAppendUint64(b, d.h[5])
b = byteorder.BEAppendUint64(b, d.h[6])
b = byteorder.BEAppendUint64(b, d.h[7])
b = append(b, d.x[:d.nx]...)
b = append(b, make([]byte, len(d.x)-d.nx)...)
b = byteorder.BEAppendUint64(b, d.len)
return b, nil
}
func (d *Digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic512) {
return errors.New("crypto/sha512: invalid hash state identifier")
}
switch {
case d.size == size384 && string(b[:len(magic384)]) == magic384:
case d.size == size224 && string(b[:len(magic512_224)]) == magic512_224:
case d.size == size256 && string(b[:len(magic512_256)]) == magic512_256:
case d.size == size512 && string(b[:len(magic512)]) == magic512:
default:
return errors.New("crypto/sha512: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("crypto/sha512: invalid hash state size")
}
b = b[len(magic512):]
b, d.h[0] = consumeUint64(b)
b, d.h[1] = consumeUint64(b)
b, d.h[2] = consumeUint64(b)
b, d.h[3] = consumeUint64(b)
b, d.h[4] = consumeUint64(b)
b, d.h[5] = consumeUint64(b)
b, d.h[6] = consumeUint64(b)
b, d.h[7] = consumeUint64(b)
b = b[copy(d.x[:], b):]
b, d.len = consumeUint64(b)
d.nx = int(d.len % chunk)
return nil
}
func consumeUint64(b []byte) ([]byte, uint64) {
return b[8:], byteorder.BEUint64(b)
}
// New returns a new Digest computing the SHA-512 hash.
func New() *Digest {
d := &Digest{size: size512}
d.Reset()
return d
}
// New512_224 returns a new Digest computing the SHA-512/224 hash.
func New512_224() *Digest {
d := &Digest{size: size224}
d.Reset()
return d
}
// New512_256 returns a new Digest computing the SHA-512/256 hash.
func New512_256() *Digest {
d := &Digest{size: size256}
d.Reset()
return d
}
// New384 returns a new Digest computing the SHA-384 hash.
func New384() *Digest {
d := &Digest{size: size384}
d.Reset()
return d
}
func (d *Digest) Size() int {
return d.size
}
func (d *Digest) BlockSize() int { return blockSize }
func (d *Digest) Write(p []byte) (nn int, err error) {
nn = len(p)
d.len += uint64(nn)
if d.nx > 0 {
n := copy(d.x[d.nx:], p)
d.nx += n
if d.nx == chunk {
block(d, d.x[:])
d.nx = 0
}
p = p[n:]
}
if len(p) >= chunk {
n := len(p) &^ (chunk - 1)
block(d, p[:n])
p = p[n:]
}
if len(p) > 0 {
d.nx = copy(d.x[:], p)
}
return
}
func (d *Digest) Sum(in []byte) []byte {
// fips140.RecordApproved()
// Make a copy of d so that caller can keep writing and summing.
d0 := new(Digest)
*d0 = *d
hash := d0.checkSum()
return append(in, hash[:d.size]...)
}
func (d *Digest) checkSum() [size512]byte {
// Padding. Add a 1 bit and 0 bits until 112 bytes mod 128.
len := d.len
var tmp [128 + 16]byte // padding + length buffer
tmp[0] = 0x80
var t uint64
if len%128 < 112 {
t = 112 - len%128
} else {
t = 128 + 112 - len%128
}
// Length in bits.
len <<= 3
padlen := tmp[:t+16]
// Upper 64 bits are always zero, because len variable has type uint64,
// and tmp is already zeroed at that index, so we can skip updating it.
// byteorder.BEPutUint64(padlen[t+0:], 0)
byteorder.BEPutUint64(padlen[t+8:], len)
d.Write(padlen)
if d.nx != 0 {
panic("d.nx != 0")
}
var digest [size512]byte
byteorder.BEPutUint64(digest[0:], d.h[0])
byteorder.BEPutUint64(digest[8:], d.h[1])
byteorder.BEPutUint64(digest[16:], d.h[2])
byteorder.BEPutUint64(digest[24:], d.h[3])
byteorder.BEPutUint64(digest[32:], d.h[4])
byteorder.BEPutUint64(digest[40:], d.h[5])
if d.size != size384 {
byteorder.BEPutUint64(digest[48:], d.h[6])
byteorder.BEPutUint64(digest[56:], d.h[7])
}
return digest
}

144
sha512/sha512block.go Normal file
View File

@ -0,0 +1,144 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// SHA512 block step.
// In its own file so that a faster assembly or C version
// can be substituted easily.
package sha512
import "math/bits"
var _K = [...]uint64{
0x428a2f98d728ae22,
0x7137449123ef65cd,
0xb5c0fbcfec4d3b2f,
0xe9b5dba58189dbbc,
0x3956c25bf348b538,
0x59f111f1b605d019,
0x923f82a4af194f9b,
0xab1c5ed5da6d8118,
0xd807aa98a3030242,
0x12835b0145706fbe,
0x243185be4ee4b28c,
0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f,
0x80deb1fe3b1696b1,
0x9bdc06a725c71235,
0xc19bf174cf692694,
0xe49b69c19ef14ad2,
0xefbe4786384f25e3,
0x0fc19dc68b8cd5b5,
0x240ca1cc77ac9c65,
0x2de92c6f592b0275,
0x4a7484aa6ea6e483,
0x5cb0a9dcbd41fbd4,
0x76f988da831153b5,
0x983e5152ee66dfab,
0xa831c66d2db43210,
0xb00327c898fb213f,
0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2,
0xd5a79147930aa725,
0x06ca6351e003826f,
0x142929670a0e6e70,
0x27b70a8546d22ffc,
0x2e1b21385c26c926,
0x4d2c6dfc5ac42aed,
0x53380d139d95b3df,
0x650a73548baf63de,
0x766a0abb3c77b2a8,
0x81c2c92e47edaee6,
0x92722c851482353b,
0xa2bfe8a14cf10364,
0xa81a664bbc423001,
0xc24b8b70d0f89791,
0xc76c51a30654be30,
0xd192e819d6ef5218,
0xd69906245565a910,
0xf40e35855771202a,
0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8,
0x1e376c085141ab53,
0x2748774cdf8eeb99,
0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63,
0x4ed8aa4ae3418acb,
0x5b9cca4f7763e373,
0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc,
0x78a5636f43172f60,
0x84c87814a1f0ab72,
0x8cc702081a6439ec,
0x90befffa23631e28,
0xa4506cebde82bde9,
0xbef9a3f7b2c67915,
0xc67178f2e372532b,
0xca273eceea26619c,
0xd186b8c721c0c207,
0xeada7dd6cde0eb1e,
0xf57d4f7fee6ed178,
0x06f067aa72176fba,
0x0a637dc5a2c898a6,
0x113f9804bef90dae,
0x1b710b35131c471b,
0x28db77f523047d84,
0x32caab7b40c72493,
0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c,
0x4cc5d4becb3e42b6,
0x597f299cfc657e2a,
0x5fcb6fab3ad6faec,
0x6c44198c4a475817,
}
func blockGeneric(dig *Digest, p []byte) {
var w [80]uint64
h0, h1, h2, h3, h4, h5, h6, h7 := dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]
for len(p) >= chunk {
for i := 0; i < 16; i++ {
j := i * 8
w[i] = uint64(p[j])<<56 | uint64(p[j+1])<<48 | uint64(p[j+2])<<40 | uint64(p[j+3])<<32 |
uint64(p[j+4])<<24 | uint64(p[j+5])<<16 | uint64(p[j+6])<<8 | uint64(p[j+7])
}
for i := 16; i < 80; i++ {
v1 := w[i-2]
t1 := bits.RotateLeft64(v1, -19) ^ bits.RotateLeft64(v1, -61) ^ (v1 >> 6)
v2 := w[i-15]
t2 := bits.RotateLeft64(v2, -1) ^ bits.RotateLeft64(v2, -8) ^ (v2 >> 7)
w[i] = t1 + w[i-7] + t2 + w[i-16]
}
a, b, c, d, e, f, g, h := h0, h1, h2, h3, h4, h5, h6, h7
for i := 0; i < 80; i++ {
t1 := h + (bits.RotateLeft64(e, -14) ^ bits.RotateLeft64(e, -18) ^ bits.RotateLeft64(e, -41)) + ((e & f) ^ (^e & g)) + _K[i] + w[i]
t2 := (bits.RotateLeft64(a, -28) ^ bits.RotateLeft64(a, -34) ^ bits.RotateLeft64(a, -39)) + ((a & b) ^ (a & c) ^ (b & c))
h = g
g = f
f = e
e = d + t1
d = c
c = b
b = a
a = t1 + t2
}
h0 += a
h1 += b
h2 += c
h3 += d
h4 += e
h5 += f
h6 += g
h7 += h
p = p[chunk:]
}
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7] = h0, h1, h2, h3, h4, h5, h6, h7
}

View File

@ -0,0 +1,9 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha512
func block(dig *Digest, p []byte) {
blockGeneric(dig, p)
}

178
tls13/tls13.go Normal file
View File

@ -0,0 +1,178 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tls13 implements the TLS 1.3 Key Schedule as specified in RFC 8446,
// Section 7.1 and allowed by FIPS 140-3 IG 2.4.B Resolution 7.
package tls13
import (
"github.com/xtls/reality/byteorder"
"github.com/xtls/reality/fips140"
"github.com/xtls/reality/hkdf"
)
// We don't set the service indicator in this package but we delegate that to
// the underlying functions because the TLS 1.3 KDF does not have a standard of
// its own.
// ExpandLabel implements HKDF-Expand-Label from RFC 8446, Section 7.1.
func ExpandLabel[H fips140.Hash](hash func() H, secret []byte, label string, context []byte, length int) []byte {
if len("tls13 ")+len(label) > 255 || len(context) > 255 {
// It should be impossible for this to panic: labels are fixed strings,
// and context is either a fixed-length computed hash, or parsed from a
// field which has the same length limitation.
//
// Another reasonable approach might be to return a randomized slice if
// we encounter an error, which would break the connection, but avoid
// panicking. This would perhaps be safer but significantly more
// confusing to users.
panic("tls13: label or context too long")
}
hkdfLabel := make([]byte, 0, 2+1+len("tls13 ")+len(label)+1+len(context))
hkdfLabel = byteorder.BEAppendUint16(hkdfLabel, uint16(length))
hkdfLabel = append(hkdfLabel, byte(len("tls13 ")+len(label)))
hkdfLabel = append(hkdfLabel, "tls13 "...)
hkdfLabel = append(hkdfLabel, label...)
hkdfLabel = append(hkdfLabel, byte(len(context)))
hkdfLabel = append(hkdfLabel, context...)
return hkdf.Expand(hash, secret, string(hkdfLabel), length)
}
func extract[H fips140.Hash](hash func() H, newSecret, currentSecret []byte) []byte {
if newSecret == nil {
newSecret = make([]byte, hash().Size())
}
return hkdf.Extract(hash, newSecret, currentSecret)
}
func deriveSecret[H fips140.Hash](hash func() H, secret []byte, label string, transcript fips140.Hash) []byte {
if transcript == nil {
transcript = hash()
}
return ExpandLabel(hash, secret, label, transcript.Sum(nil), transcript.Size())
}
const (
resumptionBinderLabel = "res binder"
clientEarlyTrafficLabel = "c e traffic"
clientHandshakeTrafficLabel = "c hs traffic"
serverHandshakeTrafficLabel = "s hs traffic"
clientApplicationTrafficLabel = "c ap traffic"
serverApplicationTrafficLabel = "s ap traffic"
earlyExporterLabel = "e exp master"
exporterLabel = "exp master"
resumptionLabel = "res master"
)
type EarlySecret struct {
secret []byte
hash func() fips140.Hash
}
func NewEarlySecret[H fips140.Hash](hash func() H, psk []byte) *EarlySecret {
return &EarlySecret{
secret: extract(hash, psk, nil),
hash: func() fips140.Hash { return hash() },
}
}
func (s *EarlySecret) ResumptionBinderKey() []byte {
return deriveSecret(s.hash, s.secret, resumptionBinderLabel, nil)
}
// ClientEarlyTrafficSecret derives the client_early_traffic_secret from the
// early secret and the transcript up to the ClientHello.
func (s *EarlySecret) ClientEarlyTrafficSecret(transcript fips140.Hash) []byte {
return deriveSecret(s.hash, s.secret, clientEarlyTrafficLabel, transcript)
}
type HandshakeSecret struct {
secret []byte
hash func() fips140.Hash
}
func (s *EarlySecret) HandshakeSecret(sharedSecret []byte) *HandshakeSecret {
derived := deriveSecret(s.hash, s.secret, "derived", nil)
return &HandshakeSecret{
secret: extract(s.hash, sharedSecret, derived),
hash: s.hash,
}
}
// ClientHandshakeTrafficSecret derives the client_handshake_traffic_secret from
// the handshake secret and the transcript up to the ServerHello.
func (s *HandshakeSecret) ClientHandshakeTrafficSecret(transcript fips140.Hash) []byte {
return deriveSecret(s.hash, s.secret, clientHandshakeTrafficLabel, transcript)
}
// ServerHandshakeTrafficSecret derives the server_handshake_traffic_secret from
// the handshake secret and the transcript up to the ServerHello.
func (s *HandshakeSecret) ServerHandshakeTrafficSecret(transcript fips140.Hash) []byte {
return deriveSecret(s.hash, s.secret, serverHandshakeTrafficLabel, transcript)
}
type MasterSecret struct {
secret []byte
hash func() fips140.Hash
}
func (s *HandshakeSecret) MasterSecret() *MasterSecret {
derived := deriveSecret(s.hash, s.secret, "derived", nil)
return &MasterSecret{
secret: extract(s.hash, nil, derived),
hash: s.hash,
}
}
// ClientApplicationTrafficSecret derives the client_application_traffic_secret_0
// from the master secret and the transcript up to the server Finished.
func (s *MasterSecret) ClientApplicationTrafficSecret(transcript fips140.Hash) []byte {
return deriveSecret(s.hash, s.secret, clientApplicationTrafficLabel, transcript)
}
// ServerApplicationTrafficSecret derives the server_application_traffic_secret_0
// from the master secret and the transcript up to the server Finished.
func (s *MasterSecret) ServerApplicationTrafficSecret(transcript fips140.Hash) []byte {
return deriveSecret(s.hash, s.secret, serverApplicationTrafficLabel, transcript)
}
// ResumptionMasterSecret derives the resumption_master_secret from the master secret
// and the transcript up to the client Finished.
func (s *MasterSecret) ResumptionMasterSecret(transcript fips140.Hash) []byte {
return deriveSecret(s.hash, s.secret, resumptionLabel, transcript)
}
type ExporterMasterSecret struct {
secret []byte
hash func() fips140.Hash
}
// ExporterMasterSecret derives the exporter_master_secret from the master secret
// and the transcript up to the server Finished.
func (s *MasterSecret) ExporterMasterSecret(transcript fips140.Hash) *ExporterMasterSecret {
return &ExporterMasterSecret{
secret: deriveSecret(s.hash, s.secret, exporterLabel, transcript),
hash: s.hash,
}
}
// EarlyExporterMasterSecret derives the exporter_master_secret from the early secret
// and the transcript up to the ClientHello.
func (s *EarlySecret) EarlyExporterMasterSecret(transcript fips140.Hash) *ExporterMasterSecret {
return &ExporterMasterSecret{
secret: deriveSecret(s.hash, s.secret, earlyExporterLabel, transcript),
hash: s.hash,
}
}
func (s *ExporterMasterSecret) Exporter(label string, context []byte, length int) []byte {
secret := deriveSecret(s.hash, s.secret, label, nil)
h := s.hash()
h.Write(context)
return ExpandLabel(s.hash, secret, "exporter", h.Sum(nil), length)
}
func TestingOnlyExporterSecret(s *ExporterMasterSecret) []byte {
return s.secret
}