// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE-Go file. // Server side implementation of REALITY protocol, a fork of package tls in latest Go. // For client side, please follow https://github.com/XTLS/Xray-core/blob/main/transport/internet/reality/reality.go. // Package tls partially implements TLS 1.2, as specified in RFC 5246, // and TLS 1.3, as specified in RFC 8446. // // # FIPS 140-3 mode // // When the program is in [FIPS 140-3 mode], this package behaves as if only // SP 800-140C and SP 800-140D approved protocol versions, cipher suites, // signature algorithms, certificate public key types and sizes, and key // exchange and derivation algorithms were implemented. Others are silently // ignored and not negotiated, or rejected. This set may depend on the // algorithms supported by the FIPS 140-3 Go Cryptographic Module selected with // GOFIPS140, and may change across Go versions. // // [FIPS 140-3 mode]: https://go.dev/doc/security/fips140 package reality // BUG(agl): The crypto/tls package only implements some countermeasures // against Lucky13 attacks on CBC-mode encryption, and only on SHA1 // variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and // https://www.imperialviolet.org/2013/02/04/luckythirteen.html. import ( "bytes" "context" "crypto" "crypto/aes" "crypto/cipher" "crypto/ecdsa" "crypto/ed25519" "crypto/mlkem" "crypto/rsa" "crypto/sha256" "crypto/x509" "encoding/binary" "encoding/pem" "errors" "fmt" "io" "net" "os" "runtime" "strings" "sync" "time" "github.com/pires/go-proxyproto" "golang.org/x/crypto/curve25519" "golang.org/x/crypto/hkdf" ) type CloseWriteConn interface { net.Conn CloseWrite() error } type MirrorConn struct { *sync.Mutex net.Conn Target net.Conn } func (c *MirrorConn) Read(b []byte) (int, error) { c.Unlock() runtime.Gosched() n, err := c.Conn.Read(b) c.Lock() // calling c.Lock() before c.Target.Write(), to make sure that this goroutine has the priority to make the next move if n != 0 { c.Target.Write(b[:n]) } if err != nil { c.Target.Close() } return n, err } func (c *MirrorConn) Write(b []byte) (int, error) { return 0, fmt.Errorf("Write(%v)", len(b)) } func (c *MirrorConn) Close() error { return fmt.Errorf("Close()") } func (c *MirrorConn) SetDeadline(t time.Time) error { return nil } func (c *MirrorConn) SetReadDeadline(t time.Time) error { return nil } func (c *MirrorConn) SetWriteDeadline(t time.Time) error { return nil } var ( size = 8192 empty = make([]byte, size) types = [7]string{ "Server Hello", "Change Cipher Spec", "Encrypted Extensions", "Certificate", "Certificate Verify", "Finished", "New Session Ticket", } ) func Value(vals ...byte) (value int) { for i, val := range vals { value |= int(val) << ((len(vals) - i - 1) * 8) } return } // Server returns a new TLS server side connection // using conn as the underlying transport. // The configuration config must be non-nil and must include // at least one certificate or else set GetCertificate. func Server(ctx context.Context, conn net.Conn, config *Config) (*Conn, error) { remoteAddr := conn.RemoteAddr().String() if config.Show { fmt.Printf("REALITY remoteAddr: %v\n", remoteAddr) } target, err := config.DialContext(ctx, config.Type, config.Dest) if err != nil { conn.Close() return nil, errors.New("REALITY: failed to dial dest: " + err.Error()) } if config.Xver == 1 || config.Xver == 2 { if _, err = proxyproto.HeaderProxyFromAddrs(config.Xver, conn.RemoteAddr(), conn.LocalAddr()).WriteTo(target); err != nil { target.Close() conn.Close() return nil, errors.New("REALITY: failed to send PROXY protocol: " + err.Error()) } } raw := conn if pc, ok := conn.(*proxyproto.Conn); ok { raw = pc.Raw() // for TCP splicing in io.Copy() } underlying := raw.(CloseWriteConn) // *net.TCPConn or *net.UnixConn mutex := new(sync.Mutex) hs := serverHandshakeStateTLS13{ c: &Conn{ conn: &MirrorConn{ Mutex: mutex, Conn: conn, Target: target, }, config: config, }, ctx: context.Background(), } copying := false waitGroup := new(sync.WaitGroup) waitGroup.Add(2) go func() { for { mutex.Lock() hs.clientHello, _, err = hs.c.readClientHello(context.Background()) // TODO: Change some rules in this function. if copying || err != nil || hs.c.vers != VersionTLS13 || !config.ServerNames[hs.clientHello.serverName] { break } for _, keyShare := range hs.clientHello.keyShares { if keyShare.group != X25519 || len(keyShare.data) != 32 { continue } if hs.c.AuthKey, err = curve25519.X25519(config.PrivateKey, keyShare.data); err != nil { break } if _, err = hkdf.New(sha256.New, hs.c.AuthKey, hs.clientHello.random[:20], []byte("REALITY")).Read(hs.c.AuthKey); err != nil { break } block, _ := aes.NewCipher(hs.c.AuthKey) aead, _ := cipher.NewGCM(block) if config.Show { fmt.Printf("REALITY remoteAddr: %v\ths.c.AuthKey[:16]: %v\tAEAD: %T\n", remoteAddr, hs.c.AuthKey[:16], aead) } ciphertext := make([]byte, 32) plainText := make([]byte, 32) copy(ciphertext, hs.clientHello.sessionId) copy(hs.clientHello.sessionId, plainText) // hs.clientHello.sessionId points to hs.clientHello.raw[39:] if _, err = aead.Open(plainText[:0], hs.clientHello.random[20:], ciphertext, hs.clientHello.original); err != nil { break } copy(hs.clientHello.sessionId, ciphertext) copy(hs.c.ClientVer[:], plainText) hs.c.ClientTime = time.Unix(int64(binary.BigEndian.Uint32(plainText[4:])), 0) copy(hs.c.ClientShortId[:], plainText[8:]) if config.Show { fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientVer: %v\n", remoteAddr, hs.c.ClientVer) fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientTime: %v\n", remoteAddr, hs.c.ClientTime) fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientShortId: %v\n", remoteAddr, hs.c.ClientShortId) } if (config.MinClientVer == nil || Value(hs.c.ClientVer[:]...) >= Value(config.MinClientVer...)) && (config.MaxClientVer == nil || Value(hs.c.ClientVer[:]...) <= Value(config.MaxClientVer...)) && (config.MaxTimeDiff == 0 || time.Since(hs.c.ClientTime).Abs() <= config.MaxTimeDiff) && (config.ShortIds[hs.c.ClientShortId]) { hs.c.conn = conn } break } if config.Show { fmt.Printf("REALITY remoteAddr: %v\ths.c.conn == conn: %v\n", remoteAddr, hs.c.conn == conn) } break } mutex.Unlock() if hs.c.conn != conn { if config.Show && hs.clientHello != nil { fmt.Printf("REALITY remoteAddr: %v\tforwarded SNI: %v\n", remoteAddr, hs.clientHello.serverName) } io.Copy(target, underlying) } waitGroup.Done() }() go func() { s2cSaved := make([]byte, 0, size) buf := make([]byte, size) handshakeLen := 0 f: for { runtime.Gosched() n, err := target.Read(buf) if n == 0 { if err != nil { conn.Close() waitGroup.Done() return } continue } mutex.Lock() s2cSaved = append(s2cSaved, buf[:n]...) if hs.c.conn != conn { copying = true // if the target already sent some data, just start bidirectional direct forwarding break } if len(s2cSaved) > size { break } for i, t := range types { if hs.c.out.handshakeLen[i] != 0 { continue } if i == 6 && len(s2cSaved) == 0 { break } if handshakeLen == 0 && len(s2cSaved) > recordHeaderLen { if Value(s2cSaved[1:3]...) != VersionTLS12 || (i == 0 && (recordType(s2cSaved[0]) != recordTypeHandshake || s2cSaved[5] != typeServerHello)) || (i == 1 && (recordType(s2cSaved[0]) != recordTypeChangeCipherSpec || s2cSaved[5] != 1)) || (i > 1 && recordType(s2cSaved[0]) != recordTypeApplicationData) { break f } handshakeLen = recordHeaderLen + Value(s2cSaved[3:5]...) } if config.Show { fmt.Printf("REALITY remoteAddr: %v\tlen(s2cSaved): %v\t%v: %v\n", remoteAddr, len(s2cSaved), t, handshakeLen) } if handshakeLen > size { // too long break f } if i == 1 && handshakeLen > 0 && handshakeLen != 6 { break f } if i == 2 && handshakeLen > 512 { hs.c.out.handshakeLen[i] = handshakeLen hs.c.out.handshakeBuf = buf[:0] break } if i == 6 && handshakeLen > 0 { hs.c.out.handshakeLen[i] = handshakeLen break } if handshakeLen == 0 || len(s2cSaved) < handshakeLen { mutex.Unlock() continue f } if i == 0 { hs.hello = new(serverHelloMsg) if !hs.hello.unmarshal(s2cSaved[recordHeaderLen:handshakeLen]) || hs.hello.vers != VersionTLS12 || hs.hello.supportedVersion != VersionTLS13 || cipherSuiteTLS13ByID(hs.hello.cipherSuite) == nil || (!(hs.hello.serverShare.group == X25519 && len(hs.hello.serverShare.data) == 32) && !(hs.hello.serverShare.group == X25519MLKEM768 && len(hs.hello.serverShare.data) == mlkem.CiphertextSize768+32)) { break f } } hs.c.out.handshakeLen[i] = handshakeLen s2cSaved = s2cSaved[handshakeLen:] handshakeLen = 0 } start := time.Now() err = hs.handshake() if config.Show { fmt.Printf("REALITY remoteAddr: %v\ths.handshake() err: %v\n", remoteAddr, err) } if err != nil { break } go func() { // TODO: Probe target's maxUselessRecords and some time-outs in advance. if handshakeLen-len(s2cSaved) > 0 { io.ReadFull(target, buf[:handshakeLen-len(s2cSaved)]) } if n, err := target.Read(buf); !hs.c.isHandshakeComplete.Load() { if err != nil { conn.Close() } if config.Show { fmt.Printf("REALITY remoteAddr: %v\ttime.Since(start): %v\tn: %v\terr: %v\n", remoteAddr, time.Since(start), n, err) } } }() err = hs.readClientFinished() if config.Show { fmt.Printf("REALITY remoteAddr: %v\ths.readClientFinished() err: %v\n", remoteAddr, err) } if err != nil { break } hs.c.isHandshakeComplete.Store(true) break } mutex.Unlock() if hs.c.out.handshakeLen[0] == 0 { // if the target sent an incorrect Server Hello, or before that if hs.c.conn == conn { // if we processed the Client Hello successfully but the target did not waitGroup.Add(1) go func() { io.Copy(target, underlying) waitGroup.Done() }() } conn.Write(s2cSaved) io.Copy(underlying, target) // Here is bidirectional direct forwarding: // client ---underlying--- server ---target--- dest // Call `underlying.CloseWrite()` once `io.Copy()` returned underlying.CloseWrite() } waitGroup.Done() }() waitGroup.Wait() target.Close() if config.Show { fmt.Printf("REALITY remoteAddr: %v\ths.c.handshakeStatus: %v\n", remoteAddr, hs.c.isHandshakeComplete.Load()) } if hs.c.isHandshakeComplete.Load() { return hs.c, nil } conn.Close() return nil, errors.New("REALITY: processed invalid connection") // TODO: Add details. /* c := &Conn{ conn: conn, config: config, } c.handshakeFn = c.serverHandshake return c */ } // Client returns a new TLS client side connection // using conn as the underlying transport. // The config cannot be nil: users must set either ServerName or // InsecureSkipVerify in the config. func Client(conn net.Conn, config *Config) *Conn { c := &Conn{ conn: conn, config: config, isClient: true, } c.handshakeFn = c.clientHandshake return c } // A listener implements a network listener (net.Listener) for TLS connections. type listener struct { net.Listener config *Config conns chan net.Conn err error } // Accept waits for and returns the next incoming TLS connection. // The returned connection is of type *Conn. func (l *listener) Accept() (net.Conn, error) { /* c, err := l.Listener.Accept() if err != nil { return nil, err } return Server(c, l.config), nil */ if c, ok := <-l.conns; ok { return c, nil } return nil, l.err } // NewListener creates a Listener which accepts connections from an inner // Listener and wraps each connection with [Server]. // The configuration config must be non-nil and must include // at least one certificate or else set GetCertificate. func NewListener(inner net.Listener, config *Config) net.Listener { l := new(listener) l.Listener = inner l.config = config { l.conns = make(chan net.Conn) go func() { for { c, err := l.Listener.Accept() if err != nil { l.err = err close(l.conns) return } go func() { defer recover() c, err = Server(context.Background(), c, l.config) if err == nil { l.conns <- c } }() } }() } return l } // Listen creates a TLS listener accepting connections on the // given network address using net.Listen. // The configuration config must be non-nil and must include // at least one certificate or else set GetCertificate. func Listen(network, laddr string, config *Config) (net.Listener, error) { // If this condition changes, consider updating http.Server.ServeTLS too. if config == nil || len(config.Certificates) == 0 && config.GetCertificate == nil && config.GetConfigForClient == nil { return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config") } l, err := net.Listen(network, laddr) if err != nil { return nil, err } return NewListener(l, config), nil } type timeoutError struct{} func (timeoutError) Error() string { return "tls: DialWithDialer timed out" } func (timeoutError) Timeout() bool { return true } func (timeoutError) Temporary() bool { return true } // DialWithDialer connects to the given network address using dialer.Dial and // then initiates a TLS handshake, returning the resulting TLS connection. Any // timeout or deadline given in the dialer apply to connection and TLS // handshake as a whole. // // DialWithDialer interprets a nil configuration as equivalent to the zero // configuration; see the documentation of [Config] for the defaults. // // DialWithDialer uses context.Background internally; to specify the context, // use [Dialer.DialContext] with NetDialer set to the desired dialer. func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) { return dial(context.Background(), dialer, network, addr, config) } func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config) (*Conn, error) { if netDialer.Timeout != 0 { var cancel context.CancelFunc ctx, cancel = context.WithTimeout(ctx, netDialer.Timeout) defer cancel() } if !netDialer.Deadline.IsZero() { var cancel context.CancelFunc ctx, cancel = context.WithDeadline(ctx, netDialer.Deadline) defer cancel() } rawConn, err := netDialer.DialContext(ctx, network, addr) if err != nil { return nil, err } colonPos := strings.LastIndex(addr, ":") if colonPos == -1 { colonPos = len(addr) } hostname := addr[:colonPos] if config == nil { config = defaultConfig() } // If no ServerName is set, infer the ServerName // from the hostname we're connecting to. if config.ServerName == "" { // Make a copy to avoid polluting argument or default. c := config.Clone() c.ServerName = hostname config = c } conn := Client(rawConn, config) if err := conn.HandshakeContext(ctx); err != nil { rawConn.Close() return nil, err } return conn, nil } // Dial connects to the given network address using net.Dial // and then initiates a TLS handshake, returning the resulting // TLS connection. // Dial interprets a nil configuration as equivalent to // the zero configuration; see the documentation of Config // for the defaults. func Dial(network, addr string, config *Config) (*Conn, error) { return DialWithDialer(new(net.Dialer), network, addr, config) } // Dialer dials TLS connections given a configuration and a Dialer for the // underlying connection. type Dialer struct { // NetDialer is the optional dialer to use for the TLS connections' // underlying TCP connections. // A nil NetDialer is equivalent to the net.Dialer zero value. NetDialer *net.Dialer // Config is the TLS configuration to use for new connections. // A nil configuration is equivalent to the zero // configuration; see the documentation of Config for the // defaults. Config *Config } // Dial connects to the given network address and initiates a TLS // handshake, returning the resulting TLS connection. // // The returned [Conn], if any, will always be of type *[Conn]. // // Dial uses context.Background internally; to specify the context, // use [Dialer.DialContext]. func (d *Dialer) Dial(network, addr string) (net.Conn, error) { return d.DialContext(context.Background(), network, addr) } func (d *Dialer) netDialer() *net.Dialer { if d.NetDialer != nil { return d.NetDialer } return new(net.Dialer) } // DialContext connects to the given network address and initiates a TLS // handshake, returning the resulting TLS connection. // // The provided Context must be non-nil. If the context expires before // the connection is complete, an error is returned. Once successfully // connected, any expiration of the context will not affect the // connection. // // The returned [Conn], if any, will always be of type *[Conn]. func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) { c, err := dial(ctx, d.netDialer(), network, addr, d.Config) if err != nil { // Don't return c (a typed nil) in an interface. return nil, err } return c, nil } // LoadX509KeyPair reads and parses a public/private key pair from a pair of // files. The files must contain PEM encoded data. The certificate file may // contain intermediate certificates following the leaf certificate to form a // certificate chain. On successful return, Certificate.Leaf will be populated. // // Before Go 1.23 Certificate.Leaf was left nil, and the parsed certificate was // discarded. This behavior can be re-enabled by setting "x509keypairleaf=0" // in the GODEBUG environment variable. func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) { certPEMBlock, err := os.ReadFile(certFile) if err != nil { return Certificate{}, err } keyPEMBlock, err := os.ReadFile(keyFile) if err != nil { return Certificate{}, err } return X509KeyPair(certPEMBlock, keyPEMBlock) } // X509KeyPair parses a public/private key pair from a pair of // PEM encoded data. On successful return, Certificate.Leaf will be populated. // // Before Go 1.23 Certificate.Leaf was left nil, and the parsed certificate was // discarded. This behavior can be re-enabled by setting "x509keypairleaf=0" // in the GODEBUG environment variable. func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) { fail := func(err error) (Certificate, error) { return Certificate{}, err } var cert Certificate var skippedBlockTypes []string for { var certDERBlock *pem.Block certDERBlock, certPEMBlock = pem.Decode(certPEMBlock) if certDERBlock == nil { break } if certDERBlock.Type == "CERTIFICATE" { cert.Certificate = append(cert.Certificate, certDERBlock.Bytes) } else { skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type) } } if len(cert.Certificate) == 0 { if len(skippedBlockTypes) == 0 { return fail(errors.New("tls: failed to find any PEM data in certificate input")) } if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") { return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched")) } return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes)) } skippedBlockTypes = skippedBlockTypes[:0] var keyDERBlock *pem.Block for { keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock) if keyDERBlock == nil { if len(skippedBlockTypes) == 0 { return fail(errors.New("tls: failed to find any PEM data in key input")) } if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" { return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key")) } return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes)) } if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") { break } skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type) } // We don't need to parse the public key for TLS, but we so do anyway // to check that it looks sane and matches the private key. x509Cert, err := x509.ParseCertificate(cert.Certificate[0]) if err != nil { return fail(err) } cert.Leaf = x509Cert cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes) if err != nil { return fail(err) } switch pub := x509Cert.PublicKey.(type) { case *rsa.PublicKey: priv, ok := cert.PrivateKey.(*rsa.PrivateKey) if !ok { return fail(errors.New("tls: private key type does not match public key type")) } if pub.N.Cmp(priv.N) != 0 { return fail(errors.New("tls: private key does not match public key")) } case *ecdsa.PublicKey: priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey) if !ok { return fail(errors.New("tls: private key type does not match public key type")) } if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 { return fail(errors.New("tls: private key does not match public key")) } case ed25519.PublicKey: priv, ok := cert.PrivateKey.(ed25519.PrivateKey) if !ok { return fail(errors.New("tls: private key type does not match public key type")) } if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) { return fail(errors.New("tls: private key does not match public key")) } default: return fail(errors.New("tls: unknown public key algorithm")) } return cert, nil } // Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates // PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys. // OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three. func parsePrivateKey(der []byte) (crypto.PrivateKey, error) { if key, err := x509.ParsePKCS1PrivateKey(der); err == nil { return key, nil } if key, err := x509.ParsePKCS8PrivateKey(der); err == nil { switch key := key.(type) { case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey: return key, nil default: return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping") } } if key, err := x509.ParseECPrivateKey(der); err == nil { return key, nil } return nil, errors.New("tls: failed to parse private key") }