mirror of
https://github.com/XTLS/REALITY.git
synced 2025-08-23 15:08:37 +00:00
The new implementation encodes the key schedule into the type system, which is actually nicer than what we had before. For #69536 Change-Id: Iddab62c2aae40bc2425a155443576bb9b7aafe03 Reviewed-on: https://go-review.googlesource.com/c/go/+/626836 Reviewed-by: Russ Cox <rsc@golang.org> Reviewed-by: Roland Shoemaker <roland@golang.org> Commit-Queue: Roland Shoemaker <roland@golang.org> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Auto-Submit: Filippo Valsorda <filippo@golang.org> Reviewed-by: Daniel McCarney <daniel@binaryparadox.net>
172 lines
4.6 KiB
Go
172 lines
4.6 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package hmac implements HMAC according to [FIPS 198-1].
|
|
//
|
|
// [FIPS 198-1]: https://doi.org/10.6028/NIST.FIPS.198-1
|
|
package hmac
|
|
|
|
import (
|
|
"github.com/xtls/reality/fips140"
|
|
"github.com/xtls/reality/sha256"
|
|
"github.com/xtls/reality/sha3"
|
|
"github.com/xtls/reality/sha512"
|
|
)
|
|
|
|
// key is zero padded to the block size of the hash function
|
|
// ipad = 0x36 byte repeated for key length
|
|
// opad = 0x5c byte repeated for key length
|
|
// hmac = H([key ^ opad] H([key ^ ipad] text))
|
|
|
|
// marshalable is the combination of encoding.BinaryMarshaler and
|
|
// encoding.BinaryUnmarshaler. Their method definitions are repeated here to
|
|
// avoid a dependency on the encoding package.
|
|
type marshalable interface {
|
|
MarshalBinary() ([]byte, error)
|
|
UnmarshalBinary([]byte) error
|
|
}
|
|
|
|
type HMAC struct {
|
|
opad, ipad []byte
|
|
outer, inner fips140.Hash
|
|
|
|
// If marshaled is true, then opad and ipad do not contain a padded
|
|
// copy of the key, but rather the marshaled state of outer/inner after
|
|
// opad/ipad has been fed into it.
|
|
marshaled bool
|
|
|
|
// forHKDF and keyLen are stored to inform the service indicator decision.
|
|
forHKDF bool
|
|
keyLen int
|
|
}
|
|
|
|
func (h *HMAC) Sum(in []byte) []byte {
|
|
// Per FIPS 140-3 IG C.M, key lengths below 112 bits are only allowed for
|
|
// legacy use (i.e. verification only) and we don't support that. However,
|
|
// HKDF uses the HMAC key for the salt, which is allowed to be shorter.
|
|
if h.keyLen < 112/8 && !h.forHKDF {
|
|
// fips140.RecordNonApproved()
|
|
}
|
|
switch h.inner.(type) {
|
|
case *sha256.Digest, *sha512.Digest, *sha3.Digest:
|
|
default:
|
|
// fips140.RecordNonApproved()
|
|
}
|
|
|
|
origLen := len(in)
|
|
in = h.inner.Sum(in)
|
|
|
|
if h.marshaled {
|
|
if err := h.outer.(marshalable).UnmarshalBinary(h.opad); err != nil {
|
|
panic(err)
|
|
}
|
|
} else {
|
|
h.outer.Reset()
|
|
h.outer.Write(h.opad)
|
|
}
|
|
h.outer.Write(in[origLen:])
|
|
return h.outer.Sum(in[:origLen])
|
|
}
|
|
|
|
func (h *HMAC) Write(p []byte) (n int, err error) {
|
|
return h.inner.Write(p)
|
|
}
|
|
|
|
func (h *HMAC) Size() int { return h.outer.Size() }
|
|
func (h *HMAC) BlockSize() int { return h.inner.BlockSize() }
|
|
|
|
func (h *HMAC) Reset() {
|
|
if h.marshaled {
|
|
if err := h.inner.(marshalable).UnmarshalBinary(h.ipad); err != nil {
|
|
panic(err)
|
|
}
|
|
return
|
|
}
|
|
|
|
h.inner.Reset()
|
|
h.inner.Write(h.ipad)
|
|
|
|
// If the underlying hash is marshalable, we can save some time by saving a
|
|
// copy of the hash state now, and restoring it on future calls to Reset and
|
|
// Sum instead of writing ipad/opad every time.
|
|
//
|
|
// We do this on Reset to avoid slowing down the common single-use case.
|
|
//
|
|
// This is allowed by FIPS 198-1, Section 6: "Conceptually, the intermediate
|
|
// results of the compression function on the B-byte blocks (K0 ⊕ ipad) and
|
|
// (K0 ⊕ opad) can be precomputed once, at the time of generation of the key
|
|
// K, or before its first use. These intermediate results can be stored and
|
|
// then used to initialize H each time that a message needs to be
|
|
// authenticated using the same key. [...] These stored intermediate values
|
|
// shall be treated and protected in the same manner as secret keys."
|
|
marshalableInner, innerOK := h.inner.(marshalable)
|
|
if !innerOK {
|
|
return
|
|
}
|
|
marshalableOuter, outerOK := h.outer.(marshalable)
|
|
if !outerOK {
|
|
return
|
|
}
|
|
|
|
imarshal, err := marshalableInner.MarshalBinary()
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
h.outer.Reset()
|
|
h.outer.Write(h.opad)
|
|
omarshal, err := marshalableOuter.MarshalBinary()
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Marshaling succeeded; save the marshaled state for later
|
|
h.ipad = imarshal
|
|
h.opad = omarshal
|
|
h.marshaled = true
|
|
}
|
|
|
|
// New returns a new HMAC hash using the given [fips140.Hash] type and key.
|
|
func New[H fips140.Hash](h func() H, key []byte) *HMAC {
|
|
hm := &HMAC{keyLen: len(key)}
|
|
hm.outer = h()
|
|
hm.inner = h()
|
|
unique := true
|
|
func() {
|
|
defer func() {
|
|
// The comparison might panic if the underlying types are not comparable.
|
|
_ = recover()
|
|
}()
|
|
if hm.outer == hm.inner {
|
|
unique = false
|
|
}
|
|
}()
|
|
if !unique {
|
|
panic("crypto/hmac: hash generation function does not produce unique values")
|
|
}
|
|
blocksize := hm.inner.BlockSize()
|
|
hm.ipad = make([]byte, blocksize)
|
|
hm.opad = make([]byte, blocksize)
|
|
if len(key) > blocksize {
|
|
// If key is too big, hash it.
|
|
hm.outer.Write(key)
|
|
key = hm.outer.Sum(nil)
|
|
}
|
|
copy(hm.ipad, key)
|
|
copy(hm.opad, key)
|
|
for i := range hm.ipad {
|
|
hm.ipad[i] ^= 0x36
|
|
}
|
|
for i := range hm.opad {
|
|
hm.opad[i] ^= 0x5c
|
|
}
|
|
hm.inner.Write(hm.ipad)
|
|
|
|
return hm
|
|
}
|
|
|
|
// MarkAsUsedInKDF records that this HMAC instance is used as part of a KDF.
|
|
func MarkAsUsedInKDF(h *HMAC) {
|
|
h.forHKDF = true
|
|
} |