0
0
mirror of https://github.com/XTLS/REALITY.git synced 2025-08-22 14:38:35 +00:00
XTLS_REALITY/tls.go
yuhan6665 7a94067d41 crypto/tls: don't cache marshal'd bytes
Only cache the wire representation for clientHelloMsg and serverHelloMsg
during unmarshal, which are the only places we actually need to hold
onto them. For everything else, remove the raw field.

This appears to have zero performance impact:

name                                               old time/op   new time/op   delta
CertCache/0-10                                       177µs ± 2%    189µs ±11%   ~     (p=0.700 n=3+3)
CertCache/1-10                                       184µs ± 3%    182µs ± 6%   ~     (p=1.000 n=3+3)
CertCache/2-10                                       187µs ±12%    187µs ± 2%   ~     (p=1.000 n=3+3)
CertCache/3-10                                       204µs ±21%    187µs ± 1%   ~     (p=0.700 n=3+3)
HandshakeServer/RSA-10                               410µs ± 2%    410µs ± 3%   ~     (p=1.000 n=3+3)
HandshakeServer/ECDHE-P256-RSA/TLSv13-10             473µs ± 3%    460µs ± 2%   ~     (p=0.200 n=3+3)
HandshakeServer/ECDHE-P256-RSA/TLSv12-10             498µs ± 3%    489µs ± 2%   ~     (p=0.700 n=3+3)
HandshakeServer/ECDHE-P256-ECDSA-P256/TLSv13-10      140µs ± 5%    138µs ± 5%   ~     (p=1.000 n=3+3)
HandshakeServer/ECDHE-P256-ECDSA-P256/TLSv12-10      132µs ± 1%    133µs ± 2%   ~     (p=0.400 n=3+3)
HandshakeServer/ECDHE-X25519-ECDSA-P256/TLSv13-10    168µs ± 1%    171µs ± 4%   ~     (p=1.000 n=3+3)
HandshakeServer/ECDHE-X25519-ECDSA-P256/TLSv12-10    166µs ± 3%    163µs ± 0%   ~     (p=0.700 n=3+3)
HandshakeServer/ECDHE-P521-ECDSA-P521/TLSv13-10     1.87ms ± 2%   1.81ms ± 0%   ~     (p=0.100 n=3+3)
HandshakeServer/ECDHE-P521-ECDSA-P521/TLSv12-10     1.86ms ± 0%   1.86ms ± 1%   ~     (p=1.000 n=3+3)
Throughput/MaxPacket/1MB/TLSv12-10                  6.79ms ± 3%   6.73ms ± 0%   ~     (p=1.000 n=3+3)
Throughput/MaxPacket/1MB/TLSv13-10                  6.73ms ± 1%   6.75ms ± 0%   ~     (p=0.700 n=3+3)
Throughput/MaxPacket/2MB/TLSv12-10                  12.8ms ± 2%   12.7ms ± 0%   ~     (p=0.700 n=3+3)
Throughput/MaxPacket/2MB/TLSv13-10                  13.1ms ± 3%   12.8ms ± 1%   ~     (p=0.400 n=3+3)
Throughput/MaxPacket/4MB/TLSv12-10                  24.9ms ± 2%   24.7ms ± 1%   ~     (p=1.000 n=3+3)
Throughput/MaxPacket/4MB/TLSv13-10                  26.0ms ± 4%   24.9ms ± 1%   ~     (p=0.100 n=3+3)
Throughput/MaxPacket/8MB/TLSv12-10                  50.0ms ± 3%   48.9ms ± 0%   ~     (p=0.200 n=3+3)
Throughput/MaxPacket/8MB/TLSv13-10                  49.8ms ± 2%   49.3ms ± 1%   ~     (p=0.400 n=3+3)
Throughput/MaxPacket/16MB/TLSv12-10                 97.3ms ± 1%   97.4ms ± 0%   ~     (p=0.700 n=3+3)
Throughput/MaxPacket/16MB/TLSv13-10                 97.9ms ± 0%   97.9ms ± 1%   ~     (p=1.000 n=3+3)
Throughput/MaxPacket/32MB/TLSv12-10                  195ms ± 0%    194ms ± 1%   ~     (p=0.400 n=3+3)
Throughput/MaxPacket/32MB/TLSv13-10                  196ms ± 0%    196ms ± 1%   ~     (p=0.700 n=3+3)
Throughput/MaxPacket/64MB/TLSv12-10                  405ms ± 3%    385ms ± 0%   ~     (p=0.100 n=3+3)
Throughput/MaxPacket/64MB/TLSv13-10                  391ms ± 1%    388ms ± 1%   ~     (p=0.200 n=3+3)
Throughput/DynamicPacket/1MB/TLSv12-10              6.75ms ± 0%   6.75ms ± 1%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/1MB/TLSv13-10              6.84ms ± 1%   6.77ms ± 0%   ~     (p=0.100 n=3+3)
Throughput/DynamicPacket/2MB/TLSv12-10              12.8ms ± 1%   12.8ms ± 1%   ~     (p=0.400 n=3+3)
Throughput/DynamicPacket/2MB/TLSv13-10              12.8ms ± 1%   13.0ms ± 1%   ~     (p=0.200 n=3+3)
Throughput/DynamicPacket/4MB/TLSv12-10              24.8ms ± 1%   24.8ms ± 0%   ~     (p=1.000 n=3+3)
Throughput/DynamicPacket/4MB/TLSv13-10              25.1ms ± 2%   25.1ms ± 1%   ~     (p=1.000 n=3+3)
Throughput/DynamicPacket/8MB/TLSv12-10              49.2ms ± 2%   48.9ms ± 0%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/8MB/TLSv13-10              49.3ms ± 1%   49.4ms ± 1%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/16MB/TLSv12-10             97.1ms ± 0%   98.0ms ± 1%   ~     (p=0.200 n=3+3)
Throughput/DynamicPacket/16MB/TLSv13-10             98.8ms ± 1%   98.4ms ± 1%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/32MB/TLSv12-10              192ms ± 0%    198ms ± 5%   ~     (p=0.100 n=3+3)
Throughput/DynamicPacket/32MB/TLSv13-10              194ms ± 0%    196ms ± 1%   ~     (p=0.400 n=3+3)
Throughput/DynamicPacket/64MB/TLSv12-10              385ms ± 1%    384ms ± 0%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/64MB/TLSv13-10              387ms ± 0%    388ms ± 0%   ~     (p=0.400 n=3+3)
Latency/MaxPacket/200kbps/TLSv12-10                  694ms ± 0%    694ms ± 0%   ~     (p=0.700 n=3+3)
Latency/MaxPacket/200kbps/TLSv13-10                  699ms ± 0%    699ms ± 0%   ~     (p=0.700 n=3+3)
Latency/MaxPacket/500kbps/TLSv12-10                  278ms ± 0%    278ms ± 0%   ~     (p=0.400 n=3+3)
Latency/MaxPacket/500kbps/TLSv13-10                  280ms ± 0%    280ms ± 0%   ~     (p=1.000 n=3+3)
Latency/MaxPacket/1000kbps/TLSv12-10                 140ms ± 1%    140ms ± 0%   ~     (p=0.700 n=3+3)
Latency/MaxPacket/1000kbps/TLSv13-10                 141ms ± 0%    141ms ± 0%   ~     (p=1.000 n=3+3)
Latency/MaxPacket/2000kbps/TLSv12-10                70.5ms ± 0%   70.4ms ± 0%   ~     (p=0.700 n=3+3)
Latency/MaxPacket/2000kbps/TLSv13-10                70.7ms ± 0%   70.7ms ± 0%   ~     (p=0.700 n=3+3)
Latency/MaxPacket/5000kbps/TLSv12-10                28.8ms ± 0%   28.8ms ± 0%   ~     (p=0.700 n=3+3)
Latency/MaxPacket/5000kbps/TLSv13-10                28.9ms ± 0%   28.9ms ± 0%   ~     (p=0.700 n=3+3)
Latency/DynamicPacket/200kbps/TLSv12-10              134ms ± 0%    134ms ± 0%   ~     (p=0.700 n=3+3)
Latency/DynamicPacket/200kbps/TLSv13-10              138ms ± 0%    138ms ± 0%   ~     (p=1.000 n=3+3)
Latency/DynamicPacket/500kbps/TLSv12-10             54.1ms ± 0%   54.1ms ± 0%   ~     (p=1.000 n=3+3)
Latency/DynamicPacket/500kbps/TLSv13-10             55.7ms ± 0%   55.7ms ± 0%   ~     (p=0.100 n=3+3)
Latency/DynamicPacket/1000kbps/TLSv12-10            27.6ms ± 0%   27.6ms ± 0%   ~     (p=0.200 n=3+3)
Latency/DynamicPacket/1000kbps/TLSv13-10            28.4ms ± 0%   28.4ms ± 0%   ~     (p=0.200 n=3+3)
Latency/DynamicPacket/2000kbps/TLSv12-10            14.4ms ± 0%   14.4ms ± 0%   ~     (p=1.000 n=3+3)
Latency/DynamicPacket/2000kbps/TLSv13-10            14.6ms ± 0%   14.6ms ± 0%   ~     (p=1.000 n=3+3)
Latency/DynamicPacket/5000kbps/TLSv12-10            6.44ms ± 0%   6.45ms ± 0%   ~     (p=0.100 n=3+3)
Latency/DynamicPacket/5000kbps/TLSv13-10            6.49ms ± 0%   6.49ms ± 0%   ~     (p=0.700 n=3+3)

name                                               old speed     new speed     delta
Throughput/MaxPacket/1MB/TLSv12-10                 155MB/s ± 3%  156MB/s ± 0%   ~     (p=1.000 n=3+3)
Throughput/MaxPacket/1MB/TLSv13-10                 156MB/s ± 1%  155MB/s ± 0%   ~     (p=0.700 n=3+3)
Throughput/MaxPacket/2MB/TLSv12-10                 163MB/s ± 2%  165MB/s ± 0%   ~     (p=0.700 n=3+3)
Throughput/MaxPacket/2MB/TLSv13-10                 160MB/s ± 3%  164MB/s ± 1%   ~     (p=0.400 n=3+3)
Throughput/MaxPacket/4MB/TLSv12-10                 168MB/s ± 2%  170MB/s ± 1%   ~     (p=1.000 n=3+3)
Throughput/MaxPacket/4MB/TLSv13-10                 162MB/s ± 4%  168MB/s ± 1%   ~     (p=0.100 n=3+3)
Throughput/MaxPacket/8MB/TLSv12-10                 168MB/s ± 3%  172MB/s ± 0%   ~     (p=0.200 n=3+3)
Throughput/MaxPacket/8MB/TLSv13-10                 168MB/s ± 2%  170MB/s ± 1%   ~     (p=0.400 n=3+3)
Throughput/MaxPacket/16MB/TLSv12-10                172MB/s ± 1%  172MB/s ± 0%   ~     (p=0.700 n=3+3)
Throughput/MaxPacket/16MB/TLSv13-10                171MB/s ± 0%  171MB/s ± 1%   ~     (p=1.000 n=3+3)
Throughput/MaxPacket/32MB/TLSv12-10                172MB/s ± 0%  173MB/s ± 1%   ~     (p=0.400 n=3+3)
Throughput/MaxPacket/32MB/TLSv13-10                171MB/s ± 0%  172MB/s ± 1%   ~     (p=0.700 n=3+3)
Throughput/MaxPacket/64MB/TLSv12-10                166MB/s ± 3%  174MB/s ± 0%   ~     (p=0.100 n=3+3)
Throughput/MaxPacket/64MB/TLSv13-10                171MB/s ± 1%  173MB/s ± 1%   ~     (p=0.200 n=3+3)
Throughput/DynamicPacket/1MB/TLSv12-10             155MB/s ± 0%  155MB/s ± 1%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/1MB/TLSv13-10             153MB/s ± 1%  155MB/s ± 0%   ~     (p=0.100 n=3+3)
Throughput/DynamicPacket/2MB/TLSv12-10             164MB/s ± 1%  164MB/s ± 1%   ~     (p=0.400 n=3+3)
Throughput/DynamicPacket/2MB/TLSv13-10             163MB/s ± 1%  162MB/s ± 1%   ~     (p=0.200 n=3+3)
Throughput/DynamicPacket/4MB/TLSv12-10             169MB/s ± 1%  169MB/s ± 0%   ~     (p=1.000 n=3+3)
Throughput/DynamicPacket/4MB/TLSv13-10             167MB/s ± 1%  167MB/s ± 1%   ~     (p=1.000 n=3+3)
Throughput/DynamicPacket/8MB/TLSv12-10             170MB/s ± 2%  171MB/s ± 0%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/8MB/TLSv13-10             170MB/s ± 1%  170MB/s ± 1%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/16MB/TLSv12-10            173MB/s ± 0%  171MB/s ± 1%   ~     (p=0.200 n=3+3)
Throughput/DynamicPacket/16MB/TLSv13-10            170MB/s ± 1%  170MB/s ± 1%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/32MB/TLSv12-10            175MB/s ± 0%  170MB/s ± 5%   ~     (p=0.100 n=3+3)
Throughput/DynamicPacket/32MB/TLSv13-10            173MB/s ± 0%  171MB/s ± 1%   ~     (p=0.300 n=3+3)
Throughput/DynamicPacket/64MB/TLSv12-10            174MB/s ± 1%  175MB/s ± 0%   ~     (p=0.700 n=3+3)
Throughput/DynamicPacket/64MB/TLSv13-10            174MB/s ± 0%  173MB/s ± 0%   ~     (p=0.400 n=3+3)

Change-Id: Ifa79cce002011850ed8b2835edd34f60e014eea8
Cq-Include-Trybots: luci.golang.try:gotip-linux-amd64-longtest,gotip-linux-arm64-longtest
Reviewed-on: https://go-review.googlesource.com/c/go/+/580215
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Damien Neil <dneil@google.com>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
Auto-Submit: Roland Shoemaker <roland@golang.org>
2024-09-09 11:32:16 -04:00

714 lines
21 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE-Go file.
// Server side implementation of REALITY protocol, a fork of package tls in Go 1.20.
// For client side, please follow https://github.com/XTLS/Xray-core/blob/main/transport/internet/reality/reality.go.
package reality
// BUG(agl): The crypto/tls package only implements some countermeasures
// against Lucky13 attacks on CBC-mode encryption, and only on SHA1
// variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and
// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
import (
"bytes"
"context"
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"encoding/binary"
"encoding/pem"
"errors"
"fmt"
"io"
"net"
"os"
"runtime"
"strings"
"sync"
"time"
"github.com/pires/go-proxyproto"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/curve25519"
"golang.org/x/crypto/hkdf"
)
type CloseWriteConn interface {
net.Conn
CloseWrite() error
}
type MirrorConn struct {
*sync.Mutex
net.Conn
Target net.Conn
}
func (c *MirrorConn) Read(b []byte) (int, error) {
c.Unlock()
runtime.Gosched()
n, err := c.Conn.Read(b)
c.Lock() // calling c.Lock() before c.Target.Write(), to make sure that this goroutine has the priority to make the next move
if n != 0 {
c.Target.Write(b[:n])
}
if err != nil {
c.Target.Close()
}
return n, err
}
func (c *MirrorConn) Write(b []byte) (int, error) {
return 0, fmt.Errorf("Write(%v)", len(b))
}
func (c *MirrorConn) Close() error {
return fmt.Errorf("Close()")
}
func (c *MirrorConn) SetDeadline(t time.Time) error {
return nil
}
func (c *MirrorConn) SetReadDeadline(t time.Time) error {
return nil
}
func (c *MirrorConn) SetWriteDeadline(t time.Time) error {
return nil
}
var (
size = 8192
empty = make([]byte, size)
types = [7]string{
"Server Hello",
"Change Cipher Spec",
"Encrypted Extensions",
"Certificate",
"Certificate Verify",
"Finished",
"New Session Ticket",
}
)
func Value(vals ...byte) (value int) {
for i, val := range vals {
value |= int(val) << ((len(vals) - i - 1) * 8)
}
return
}
// Server returns a new TLS server side connection
// using conn as the underlying transport.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Server(ctx context.Context, conn net.Conn, config *Config) (*Conn, error) {
remoteAddr := conn.RemoteAddr().String()
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\n", remoteAddr)
}
target, err := config.DialContext(ctx, config.Type, config.Dest)
if err != nil {
conn.Close()
return nil, errors.New("REALITY: failed to dial dest: " + err.Error())
}
if config.Xver == 1 || config.Xver == 2 {
if _, err = proxyproto.HeaderProxyFromAddrs(config.Xver, conn.RemoteAddr(), conn.LocalAddr()).WriteTo(target); err != nil {
target.Close()
conn.Close()
return nil, errors.New("REALITY: failed to send PROXY protocol: " + err.Error())
}
}
raw := conn
if pc, ok := conn.(*proxyproto.Conn); ok {
raw = pc.Raw() // for TCP splicing in io.Copy()
}
underlying := raw.(CloseWriteConn) // *net.TCPConn or *net.UnixConn
mutex := new(sync.Mutex)
hs := serverHandshakeStateTLS13{
c: &Conn{
conn: &MirrorConn{
Mutex: mutex,
Conn: conn,
Target: target,
},
config: config,
},
ctx: context.Background(),
}
copying := false
waitGroup := new(sync.WaitGroup)
waitGroup.Add(2)
go func() {
for {
mutex.Lock()
hs.clientHello, err = hs.c.readClientHello(context.Background()) // TODO: Change some rules in this function.
if copying || err != nil || hs.c.vers != VersionTLS13 || !config.ServerNames[hs.clientHello.serverName] {
break
}
for i, keyShare := range hs.clientHello.keyShares {
if keyShare.group != X25519 || len(keyShare.data) != 32 {
continue
}
if hs.c.AuthKey, err = curve25519.X25519(config.PrivateKey, keyShare.data); err != nil {
break
}
if _, err = hkdf.New(sha256.New, hs.c.AuthKey, hs.clientHello.random[:20], []byte("REALITY")).Read(hs.c.AuthKey); err != nil {
break
}
var aead cipher.AEAD
if aesgcmPreferred(hs.clientHello.cipherSuites) {
block, _ := aes.NewCipher(hs.c.AuthKey)
aead, _ = cipher.NewGCM(block)
} else {
aead, _ = chacha20poly1305.New(hs.c.AuthKey)
}
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.c.AuthKey[:16]: %v\tAEAD: %T\n", remoteAddr, hs.c.AuthKey[:16], aead)
}
ciphertext := make([]byte, 32)
plainText := make([]byte, 32)
copy(ciphertext, hs.clientHello.sessionId)
copy(hs.clientHello.sessionId, plainText) // hs.clientHello.sessionId points to hs.clientHello.raw[39:]
if _, err = aead.Open(plainText[:0], hs.clientHello.random[20:], ciphertext, hs.clientHello.original); err != nil {
break
}
copy(hs.clientHello.sessionId, ciphertext)
copy(hs.c.ClientVer[:], plainText)
hs.c.ClientTime = time.Unix(int64(binary.BigEndian.Uint32(plainText[4:])), 0)
copy(hs.c.ClientShortId[:], plainText[8:])
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientVer: %v\n", remoteAddr, hs.c.ClientVer)
fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientTime: %v\n", remoteAddr, hs.c.ClientTime)
fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientShortId: %v\n", remoteAddr, hs.c.ClientShortId)
}
if (config.MinClientVer == nil || Value(hs.c.ClientVer[:]...) >= Value(config.MinClientVer...)) &&
(config.MaxClientVer == nil || Value(hs.c.ClientVer[:]...) <= Value(config.MaxClientVer...)) &&
(config.MaxTimeDiff == 0 || time.Since(hs.c.ClientTime).Abs() <= config.MaxTimeDiff) &&
(config.ShortIds[hs.c.ClientShortId]) {
hs.c.conn = conn
}
hs.clientHello.keyShares[0].group = CurveID(i)
break
}
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.c.conn == conn: %v\n", remoteAddr, hs.c.conn == conn)
}
break
}
mutex.Unlock()
if hs.c.conn != conn {
if config.Show && hs.clientHello != nil {
fmt.Printf("REALITY remoteAddr: %v\tforwarded SNI: %v\n", remoteAddr, hs.clientHello.serverName)
}
io.Copy(target, underlying)
}
waitGroup.Done()
}()
go func() {
s2cSaved := make([]byte, 0, size)
buf := make([]byte, size)
handshakeLen := 0
f:
for {
runtime.Gosched()
n, err := target.Read(buf)
if n == 0 {
if err != nil {
conn.Close()
waitGroup.Done()
return
}
continue
}
mutex.Lock()
s2cSaved = append(s2cSaved, buf[:n]...)
if hs.c.conn != conn {
copying = true // if the target already sent some data, just start bidirectional direct forwarding
break
}
if len(s2cSaved) > size {
break
}
for i, t := range types {
if hs.c.out.handshakeLen[i] != 0 {
continue
}
if i == 6 && len(s2cSaved) == 0 {
break
}
if handshakeLen == 0 && len(s2cSaved) > recordHeaderLen {
if Value(s2cSaved[1:3]...) != VersionTLS12 ||
(i == 0 && (recordType(s2cSaved[0]) != recordTypeHandshake || s2cSaved[5] != typeServerHello)) ||
(i == 1 && (recordType(s2cSaved[0]) != recordTypeChangeCipherSpec || s2cSaved[5] != 1)) ||
(i > 1 && recordType(s2cSaved[0]) != recordTypeApplicationData) {
break f
}
handshakeLen = recordHeaderLen + Value(s2cSaved[3:5]...)
}
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\tlen(s2cSaved): %v\t%v: %v\n", remoteAddr, len(s2cSaved), t, handshakeLen)
}
if handshakeLen > size { // too long
break f
}
if i == 1 && handshakeLen > 0 && handshakeLen != 6 {
break f
}
if i == 2 && handshakeLen > 512 {
hs.c.out.handshakeLen[i] = handshakeLen
hs.c.out.handshakeBuf = buf[:0]
break
}
if i == 6 && handshakeLen > 0 {
hs.c.out.handshakeLen[i] = handshakeLen
break
}
if handshakeLen == 0 || len(s2cSaved) < handshakeLen {
mutex.Unlock()
continue f
}
if i == 0 {
hs.hello = new(serverHelloMsg)
if !hs.hello.unmarshal(s2cSaved[recordHeaderLen:handshakeLen]) ||
hs.hello.vers != VersionTLS12 || hs.hello.supportedVersion != VersionTLS13 ||
cipherSuiteTLS13ByID(hs.hello.cipherSuite) == nil ||
hs.hello.serverShare.group != X25519 || len(hs.hello.serverShare.data) != 32 {
break f
}
}
hs.c.out.handshakeLen[i] = handshakeLen
s2cSaved = s2cSaved[handshakeLen:]
handshakeLen = 0
}
start := time.Now()
err = hs.handshake()
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.handshake() err: %v\n", remoteAddr, err)
}
if err != nil {
break
}
go func() { // TODO: Probe target's maxUselessRecords and some time-outs in advance.
if handshakeLen-len(s2cSaved) > 0 {
io.ReadFull(target, buf[:handshakeLen-len(s2cSaved)])
}
if n, err := target.Read(buf); !hs.c.isHandshakeComplete.Load() {
if err != nil {
conn.Close()
}
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ttime.Since(start): %v\tn: %v\terr: %v\n", remoteAddr, time.Since(start), n, err)
}
}
}()
err = hs.readClientFinished()
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.readClientFinished() err: %v\n", remoteAddr, err)
}
if err != nil {
break
}
hs.c.isHandshakeComplete.Store(true)
break
}
mutex.Unlock()
if hs.c.out.handshakeLen[0] == 0 { // if the target sent an incorrect Server Hello, or before that
if hs.c.conn == conn { // if we processed the Client Hello successfully but the target did not
waitGroup.Add(1)
go func() {
io.Copy(target, underlying)
waitGroup.Done()
}()
}
conn.Write(s2cSaved)
io.Copy(underlying, target)
// Here is bidirectional direct forwarding:
// client ---underlying--- server ---target--- dest
// Call `underlying.CloseWrite()` once `io.Copy()` returned
underlying.CloseWrite()
}
waitGroup.Done()
}()
waitGroup.Wait()
target.Close()
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.c.handshakeStatus: %v\n", remoteAddr, hs.c.isHandshakeComplete.Load())
}
if hs.c.isHandshakeComplete.Load() {
return hs.c, nil
}
conn.Close()
return nil, errors.New("REALITY: processed invalid connection") // TODO: Add details.
/*
c := &Conn{
conn: conn,
config: config,
}
c.handshakeFn = c.serverHandshake
return c
*/
}
// Client returns a new TLS client side connection
// using conn as the underlying transport.
// The config cannot be nil: users must set either ServerName or
// InsecureSkipVerify in the config.
func Client(conn net.Conn, config *Config) *Conn {
c := &Conn{
conn: conn,
config: config,
isClient: true,
}
c.handshakeFn = c.clientHandshake
return c
}
// A listener implements a network listener (net.Listener) for TLS connections.
type listener struct {
net.Listener
config *Config
conns chan net.Conn
err error
}
// Accept waits for and returns the next incoming TLS connection.
// The returned connection is of type *Conn.
func (l *listener) Accept() (net.Conn, error) {
/*
c, err := l.Listener.Accept()
if err != nil {
return nil, err
}
return Server(c, l.config), nil
*/
if c, ok := <-l.conns; ok {
return c, nil
}
return nil, l.err
}
// NewListener creates a Listener which accepts connections from an inner
// Listener and wraps each connection with [Server].
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func NewListener(inner net.Listener, config *Config) net.Listener {
l := new(listener)
l.Listener = inner
l.config = config
{
l.conns = make(chan net.Conn)
go func() {
for {
c, err := l.Listener.Accept()
if err != nil {
l.err = err
close(l.conns)
return
}
go func() {
defer recover()
c, err = Server(context.Background(), c, l.config)
if err == nil {
l.conns <- c
}
}()
}
}()
}
return l
}
// Listen creates a TLS listener accepting connections on the
// given network address using net.Listen.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Listen(network, laddr string, config *Config) (net.Listener, error) {
if config == nil || len(config.Certificates) == 0 &&
config.GetCertificate == nil && config.GetConfigForClient == nil {
return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config")
}
l, err := net.Listen(network, laddr)
if err != nil {
return nil, err
}
return NewListener(l, config), nil
}
type timeoutError struct{}
func (timeoutError) Error() string { return "tls: DialWithDialer timed out" }
func (timeoutError) Timeout() bool { return true }
func (timeoutError) Temporary() bool { return true }
// DialWithDialer connects to the given network address using dialer.Dial and
// then initiates a TLS handshake, returning the resulting TLS connection. Any
// timeout or deadline given in the dialer apply to connection and TLS
// handshake as a whole.
//
// DialWithDialer interprets a nil configuration as equivalent to the zero
// configuration; see the documentation of [Config] for the defaults.
//
// DialWithDialer uses context.Background internally; to specify the context,
// use [Dialer.DialContext] with NetDialer set to the desired dialer.
func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
return dial(context.Background(), dialer, network, addr, config)
}
func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
if netDialer.Timeout != 0 {
var cancel context.CancelFunc
ctx, cancel = context.WithTimeout(ctx, netDialer.Timeout)
defer cancel()
}
if !netDialer.Deadline.IsZero() {
var cancel context.CancelFunc
ctx, cancel = context.WithDeadline(ctx, netDialer.Deadline)
defer cancel()
}
rawConn, err := netDialer.DialContext(ctx, network, addr)
if err != nil {
return nil, err
}
colonPos := strings.LastIndex(addr, ":")
if colonPos == -1 {
colonPos = len(addr)
}
hostname := addr[:colonPos]
if config == nil {
config = defaultConfig()
}
// If no ServerName is set, infer the ServerName
// from the hostname we're connecting to.
if config.ServerName == "" {
// Make a copy to avoid polluting argument or default.
c := config.Clone()
c.ServerName = hostname
config = c
}
conn := Client(rawConn, config)
if err := conn.HandshakeContext(ctx); err != nil {
rawConn.Close()
return nil, err
}
return conn, nil
}
// Dial connects to the given network address using net.Dial
// and then initiates a TLS handshake, returning the resulting
// TLS connection.
// Dial interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Dial(network, addr string, config *Config) (*Conn, error) {
return DialWithDialer(new(net.Dialer), network, addr, config)
}
// Dialer dials TLS connections given a configuration and a Dialer for the
// underlying connection.
type Dialer struct {
// NetDialer is the optional dialer to use for the TLS connections'
// underlying TCP connections.
// A nil NetDialer is equivalent to the net.Dialer zero value.
NetDialer *net.Dialer
// Config is the TLS configuration to use for new connections.
// A nil configuration is equivalent to the zero
// configuration; see the documentation of Config for the
// defaults.
Config *Config
}
// Dial connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The returned [Conn], if any, will always be of type *[Conn].
//
// Dial uses context.Background internally; to specify the context,
// use [Dialer.DialContext].
func (d *Dialer) Dial(network, addr string) (net.Conn, error) {
return d.DialContext(context.Background(), network, addr)
}
func (d *Dialer) netDialer() *net.Dialer {
if d.NetDialer != nil {
return d.NetDialer
}
return new(net.Dialer)
}
// DialContext connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The provided Context must be non-nil. If the context expires before
// the connection is complete, an error is returned. Once successfully
// connected, any expiration of the context will not affect the
// connection.
//
// The returned [Conn], if any, will always be of type *[Conn].
func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) {
c, err := dial(ctx, d.netDialer(), network, addr, d.Config)
if err != nil {
// Don't return c (a typed nil) in an interface.
return nil, err
}
return c, nil
}
// LoadX509KeyPair reads and parses a public/private key pair from a pair
// of files. The files must contain PEM encoded data. The certificate file
// may contain intermediate certificates following the leaf certificate to
// form a certificate chain. On successful return, Certificate.Leaf will
// be nil because the parsed form of the certificate is not retained.
func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
certPEMBlock, err := os.ReadFile(certFile)
if err != nil {
return Certificate{}, err
}
keyPEMBlock, err := os.ReadFile(keyFile)
if err != nil {
return Certificate{}, err
}
return X509KeyPair(certPEMBlock, keyPEMBlock)
}
// X509KeyPair parses a public/private key pair from a pair of
// PEM encoded data. On successful return, Certificate.Leaf will be nil because
// the parsed form of the certificate is not retained.
func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
fail := func(err error) (Certificate, error) { return Certificate{}, err }
var cert Certificate
var skippedBlockTypes []string
for {
var certDERBlock *pem.Block
certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
if certDERBlock == nil {
break
}
if certDERBlock.Type == "CERTIFICATE" {
cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
} else {
skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type)
}
}
if len(cert.Certificate) == 0 {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in certificate input"))
}
if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") {
return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched"))
}
return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
skippedBlockTypes = skippedBlockTypes[:0]
var keyDERBlock *pem.Block
for {
keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
if keyDERBlock == nil {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in key input"))
}
if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" {
return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key"))
}
return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
break
}
skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type)
}
// We don't need to parse the public key for TLS, but we so do anyway
// to check that it looks sane and matches the private key.
x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return fail(err)
}
cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
if err != nil {
return fail(err)
}
switch pub := x509Cert.PublicKey.(type) {
case *rsa.PublicKey:
priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.N.Cmp(priv.N) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case *ecdsa.PublicKey:
priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case ed25519.PublicKey:
priv, ok := cert.PrivateKey.(ed25519.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) {
return fail(errors.New("tls: private key does not match public key"))
}
default:
return fail(errors.New("tls: unknown public key algorithm"))
}
return cert, nil
}
// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
return key, nil
}
if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
switch key := key.(type) {
case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey:
return key, nil
default:
return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping")
}
}
if key, err := x509.ParseECPrivateKey(der); err == nil {
return key, nil
}
return nil, errors.New("tls: failed to parse private key")
}